Research on GNSS non-stationary interference technology for countering interference antennas
-
摘要: 针对GNSS抗干扰天线阵列,提出基于非平稳干扰信号的信号体制设计,以提高对GNSS信号的干扰效果. 通过构造针对GNSS抗干扰天线阵列的干扰场景,对不同体制的非平稳干扰信号进行仿真. 针对采用空频抗干扰算法的抗干扰天线,通过非平稳干扰信号对GNSS信号进行干扰,其干扰效果相对传统宽带扩频干扰,可以提高干扰效果在10 dB以上. 所设计的干扰体制的非平稳特性打破了天线阵列抗干扰算法设计的前提(干扰信号广义平稳),对此类抗干扰算法的性能产生较大影响.Abstract: A signal system design based on non-stationary interference signals is proposed for GNSS anti-interference antenna arrays to improve the interference effect on GNSS signals. Simulate non-stationary interference signals from different systems by constructing interference scenarios targeting GNSS anti-interference antenna arrays. For anti-interference antennas using space frequency anti-interference algorithms, the interference effect of GNSS signals is improved by more than 10 dB compared to traditional broadband spread spectrum interference by using non-stationary interference signals. The designed interference system, with its non-stationary characteristics, breaks the premise of designing antenna array anti-interference algorithms (the interference signal is generally stable), and has a significant impact on the performance of such anti-interference algorithms.
-
Key words:
- anti-interference /
- non-stationary /
- GNSS /
- fourier transform /
- interference effect
-
表 1 非平稳信号干扰效果分析
信号制式 相对扩频信号干扰衰减增益 干扰效果分析 维纳过程 大于10 dB 在GNSS整个频段比扩频干扰的干扰效果好10 dB 固定幅值与时变频率的正弦波 约15 dB 在GNSS部分频段与扩频干扰的干扰效果相似 固定幅值与时变频率的正弦波间断信号 大于15 dB 在GNSS部分频段相对扩频干扰的干扰效果好10 dB左右 时变幅值与时变频率的正弦波信号 大于15 dB 在GNSS个别频点相对扩频干扰的干扰效果好15 dB左右 均值具有趋向性的非平稳随机信号 约15 dB 在GNSS整个频段比扩频干扰的干扰效果好15 dB左右 -
[1] 李津, 李鹏程, 刘博, 等 . 基于调零天线的无人机抗导航干扰方法[J]. 现代电子技术, 2023, 46(5): 25-28. [2] 郑建生, 陈鲤文, 代永红, 等. GNSS接收机抗干扰自适应调零技术性能估计[J]. 武汉大学学报, 2015, 40(8): 1006-1011. [3] 徐煦, 曾芳玲, 欧阳晓凤. 针对自适应调零接收机的卫星导航对抗装备运用策略研究[C]//第十届中国指挥控制大会论文集, 2023. [4] 白雪妨. 自适应调零天线对抗技术仿真研究[J]. 舰船电子对抗, 2023, 46(2): 35-39. [5] 毛虎, 吴德伟, 卢虎. 针对GPS接收机自适应天线调零抗干扰的对抗方法研究[J]. 弹箭与制导学报, 2016, 36(3): 99-103. DOI: 10.15892/j.cnki.djzdxb.2016.03.026 [6] 张教镭, 黄波. 相干干扰条件下阵列协方差矩阵退化分析[J]. 电子信息对抗技术, 2021, 36(1) : 18-22. [7] 毛虎, 吴德伟, 卢虎. GNSS信号体制抗干扰性能分析[J]. 电子科技大学学报, 2020, 49(4): 575-583. DOI: 10.12178/1001-0548.2018168 [8] 刘富, 舒展, 谢维华. 卫星导航对抗能力现状及发展趋势[J]. 导航定位学报, 2020, 8(6): 1-5. DOI: 10.3969/j.issn.2095-4999.2020.06.001 [9] 辛洁, 张天桥, 郭睿, 等. 卫星导航系统对抗体系构建方法研究[J]. 无线电工程, 2021, 51(10) : 1042-1047. DOI: 10.3969/j.issn.1003-3106.2021.10.005 [10] 焦博, 丛佃伟. 导航干扰技术在无人机防御中的应用展望[J]. 无线电工程, 2021, 51(10) : 1019- 1024. DOI: 10.3969/j.issn.1003-3106.2021.10.001 [11] 李亚伟. 针对采用阵列天线的卫星导航接收机干扰与抗干扰技术研究[D]. 西安: 西安电子科技大学, 2017. [12] 付钰, 朱克家, 韩奇, 等. 一种导航信号干扰源部署方法[J]. 导航定位学报, 2020, 8(3) : 110-114. [13] 张博, 何相勇, 赵丽华, 等. 高功率压制干扰模式下多个GPS干扰站联合部署问题[J]. 火力与指挥控制, 2018, 43(4): 32-36.