Research on signal phase measurement technology of very low frequency communication station for navigation and positioning
-
摘要: 为了在GNSS无法进行定位时提供备份的导航定位手段,开展基于甚低频通信台信号的非协作导航定位相关技术. 该研究将成为导航定位技术的一个重要研究方向,本文提出并验证了一种甚低频通信台信号的相位测量技术,实现了针对甚低频通信台信号的相位测量,并利用两个不同的测量点位,验证了相位测量的准确性. 本算法利用最小频移键控(minimum shift keying,MSK)信号自身的特点,对接收点的相对相位进行了计算,并使两个测试点保持一定距离,进行两个接收点的相位计算,比较两个测试点相位差值计算出的距离差与两个测试点和发射点距离的距离差值,来验证本算法的准确性. 验证结果表明:本文提出的算法能够准确测量出两个接收点与发射点的相位差. 该相位差可以反映距离差,通过计算多个台站的距离差实现相对定位.Abstract: In order to provide backup navigation and positioning means when the GNSS cannot locate, it is an important direction to carry out research on non cooperative navigation and positioning related technologies based on very low frequency communication station signals. This paper proposes and verifies a phase measurement technology for very low frequency communication station signals, realizes phase measurement for very low frequency communication station signals, and uses two different measurement points, verified the accuracy of phase measurement. This method uses the characteristics of minimum shift keying (MSK) signal itself to calculate the relative phase of the receiving point, keep two test point at a certain distance, calculate the phase of the two receiving points, compare the distance difference calculated by the phase difference of the two test point with the distance difference between the two test point and the transmitting point, and verify the accuracy of this algorithm. By verifying that the method proposed in this article can accurately measure the phase difference between two receiving and transmitting points. This phase difference can reflect the distance difference, and navigation and positioning can be achieved by calculating the distance difference between multiple stations.
-
Key words:
- very low-frequency /
- communication desk /
- phase measurement /
- navigation location
-
表 1 全球公开的甚低频台站信息
站名 频率/kHz 位置 纬度 经度 调制方式 波特率 JXN 16.40 Novik, Norway 66°58′27.67″N 013°52′25.02″E MSK 100 VTX 18.20 SouthVijayanarayanam, india 08°23′13.25″N 077°45′9.94″E MSK 0 HWU 18.30 Le Blanc, France (NATO) 46.71″N 1.25″E MSK 200 NST 18.60 Woodside, Australia (USA) 38.48″S 146.94″E MSK 100 GQD 19.60 Anthorn, UK 54°54′41.91″N 114°09′56.11″E MSk 100 NWC 19.80 Harold E.Holt, North West Cape, Exmouth, Australia 21°48′58.78″S 114°09′56.11″E MSK 200 NPM 21.40 Pear Harbour, Lualuahei, HI 21°25′12.60″N 158°09′4.10″W MSK 200 HWU 21.75 Rosnay, France 46°42′47.26″N 001°14′42.89″E MSk 200 JJI 22.20 Ebino, Japan 32°04′55.50″N 130°49′40.66″E MSK 225 DHO38 23.40 Rhauderfehn, Germany 53°04′44.04″N 007°36′40.66″E CW/MSK 0 NAA 24.00 Cutler, ME, USA 44°38′41.77″N 067°16′53.90″E MSK 200 NLK 25.20 La Moure, ND, USA 46°21′57.56″N 098°20′8.30″W MSK 200 TBB 26.70 Bafa, Turkey 37°24′45.81″N 027°19′24.03″E MSK 225 NRK/TFK 37.50 Grindavik, Iceland 63°51′1.31″N 022°28′0.38″W MSK 200 -
[1] 李实锋, 王玉林, 华宇, 等. 罗兰-C数据解调与解码技术研究[J]. 仪器仪表学报, 2016, 33(6): 1407-1413. [2] 唐金元, 王春雷, 王翠珍. 罗兰-C 系统多台链接收机定位解算算法[J]. 航空计算技术, 2013, 43(2): 72-75. [3] 袁大天, 陈亮, 李太平. 罗兰-C 系统试飞中的 ASF 修正方法分析[J]. 现代电子技术, 2015, 38(13): 160-162. [4] 王程峥, 李文魁, 高敬东, 等. 长河二号系统海上定位精度预测与实验研究[J]. 中国航海, 2012, 35(3): 23-26. [5] 王智, 严建华, 张洪源. 长河二号导航系统及其技术更新[J]. 数字通信世界, 2011(6): 86-87. [6] 岳光荣, 刘志特, 杨国胜, 等. 水下甚低频MSK信号最大似然多符号差分解调算法[J]. 电子科技大学学报, 2016, 45(4): 528-532. [7] 张丹丹, 陈洪义, 刘芳, 等. 基于MSK功率谱的巷道内宽度盲估计方法[J]. 太赫兹科学与电子信息学报, 2017, 15(4): 585-589. [8] 李皖, 周壁华, 江志东, 等. 闪电声源定位系统研究[J]. 电波科学学报, 2014, 29(2): 270-275. [9] 刘卿, 顾旭东, 倪彬彬. 甚低频接收机的开发与应用[J]. 现代电子技术, 2018, 41(14): 1-4. [10] SURYADI, ABDULLAH M, HUSAIN H. Development of VLF receiver for remote sensing of low atmospheric activities[C]//International Conference on Space Science and Communication, 2009. DOI: 10.1109/ICONSPACE.2009.5352627 [11] 任席闯, 严烁. 甚低频通信的MSK与MFSK性能比较分析[J]. 舰船科学技术, 2016, 38(6): 151-153. [12] 刘睿, 高敬东, 朱银兵. 交叉台链无线电导航定位中几何精度因子算法[J]. 测绘科学技术学报, 2011, 28(2): 98-100. [13] 杨冬, 宋才水. 机动式地基无线电导航系统布站策略分析[J]. 现代防御技术, 2016, 44(3): 25-31. [14] 杨俊峰. 时差定位模型与定位精度分析[J]. 电子测试, 2013(3): 103–105.