Analysis and comparison of satellite clock error prediction based on various deep learning algorithms
-
摘要: 针对卫星钟差预报模型的普遍适用性低,以及预报模型中星载原子钟类型和建模特点结合不充分等问题,提出了四种适用于非线性处理的神经网络模型来预报卫星钟差. 首先对钟差数据进行预处理;然后通过基于萤火虫算法(firefly algorithm, FA)优化反向传播(back propagation,BP)神经网络(FA-BP neural networks,FA-BPNN)模型、Elman循环神经网络模型、径向基函数(radial basis function,RBF)神经网络模型以及基于卷积神经网络-长短期记忆 (convolutional neural networks-long short term memory,CNN-LSTM) 网络模型对1 d和7 d的钟差数据量建立模型;再采用武汉大学国际GNSS服务(International GNSS Service,IGS)数据分析中心(WHU)的GPS精密钟差数据进行钟差预报;最后从不同建模数据量及不同批次卫星的同一类型原子钟和不同批次卫星的不同类型原子钟的角度,将预报效果进行分析与对比. 结果表明:1)四种模型在建模特点上,1 d的钟差数据量建模精度均比7 d的钟差数据量建模预报精度高. 其中,RBF神经网络模型随着钟差建模数据增加时,预报精度影响变大,预报精度从亚纳秒量级变化到几十纳秒量级. 2)四种神经网络模型预报精度与卫星在轨运行时长以及星载原子钟类型相关;在轨运行时间长的卫星其预报的性能不一定差,不同批次卫星的不同类型原子钟的预报效果的性能可能一样;其铯原子钟类型卫星在四种神经网络模型预报中精度最好.Abstract: Aiming at the problems of the low applicability of the satellite clock error prediction model and the insufficient combination of the type of the satellite-borne atomic clock and the modeling characteristics in the prediction model, four kinds of neural network models suitable for nonlinear processing are proposed to predict satellite clock error. Firstly, the clock error data is preprocessed. Then, the firefly algorithm models were established by using the back-propagation (FA-BPNN) model, the Elman cyclic (Elman) model, the radial basis function (RBF) model, and the convolutional neural network data of 1 d and 7 d based on the CNN-LSTM model GPS precise clock error data from the Wuhan University International GNSS service (IGS) data analysis center (WHU) are used for clock error prediction At last, the effect of the prediction is analyzed and compared from the point of view of different modeling data and different batches of satellites with the same type of atomic clock and different batches of satellites with different types of atomic clock. The results show that: 1) the modeling accuracy of 1 d clock error data is higher than that of 7 d clock error data, and the RBF model has the greatest influence on the prediction accuracy with the increase of clock error data, and the prediction accuracy changes from sub-nanosecond to tens of nanosecond. 2) the prediction accuracy of the four neural network models is related to the satellite operating time in orbit and the type of atomic clock on board. The prediction performance of the satellites with long operating time in orbit is not necessarily bad, and the prediction performance of different types of atomic clock on different batches of satellites may be the same. The cesium atomic clock type satellite has the best prediction accuracy among the four neural network models.
-
Key words:
- GPS /
- satellite clock error /
- deep learning /
- neural network model /
- satellite clock error forecast
-
表 1 FA-BP模型预报的RMSE值平均值统计
ns 卫星 1 d数据建模预报 7 d数据建模预报 G01 4.50 27.10 G08 0.64 27.70 G12 2.18 27.13 G22 7.41 28.93 G24 0.23 28.20 G26 8.51 27.15 表 2 Elman模型预报的RMSE值平均值统计
ns 卫星 1 d数据建模预报 7 d数据建模预报 G01 11.93 27.97 G08 3.13 28.15 G12 4.72 28.11 G22 15.76 28.00 G24 1.34 28.36 G26 18.13 26.57 表 3 RBF神经网络模型预报的RMSE值平均值统计
ns 卫星 1 d数据建模预报 7 d数据建模预报 G01 0.02 26.33 G08 0.07 25.78 G12 0.12 27.93 G22 0.09 17.61 G24 0.13 33.83 G26 0.02 33.03 表 4 CNN-LSTM模型预报的RMSE值平均值统计
ns 卫星 1 d数据建模预报 7 d数据建模预报 G01 5.21 17.90 G08 1.26 16.26 G12 3.12 3.73 G22 8.19 3.36 G24 7.37 2.71 G26 3.17 14.42 表 5 1 d的钟差数据建模预报的RMSE值平均值与极差值对比
ns 卫星 FA-BP Elman RBF CNN-LSTM $ \bar{\sigma } $ $ \varepsilon $ $ \bar{\sigma } $ $ \varepsilon $ $ \bar{\sigma } $ $ \varepsilon $ $ \bar{\sigma } $ $ \varepsilon $ G01 4.48 6.72 11.93 23.63 0.02 0.01 5.21 5.72 G08 0.64 1.38 3.13 3.72 0.09 0.01 1.26 1.14 G12 2.18 4.27 4.72 6.82 0.12 0.03 3.12 0.29 G22 7.41 13.00 15.76 18.77 0.09 0.04 8.19 2.04 G24 0.23 0.30 1.34 2.06 0.13 0.01 7.37 1.14 G26 8.51 11.15 18.13 36.16 0.02 0.01 3.17 1.86 表 6 7 d的钟差数据建模预报的RMSE值平均值与极差值对比
ns 卫星 FA-BP Elman RBF CNN-LSTM $ \bar{\sigma } $ $ \varepsilon $ $ \bar{\sigma } $ $ \varepsilon $ $ \bar{\sigma } $ $ \varepsilon $ $ \bar{\sigma } $ $ \varepsilon $ G01 27.10 7.69 27.97 1.10 26.33 5.34 17.90 6.66 G08 27.70 9.91 28.15 0.70 25.78 5.34 16.26 5.63 G12 27.13 10.60 0.34 28.11 27.93 8.33 3.73 8.30 G22 28.93 4.63 28.00 0.66 17.61 19.55 3.36 5.34 G24 28.20 18.11 28.36 1.06 33.83 56.27 2.71 5.81 G26 27.15 12.59 26.60 6.03 33.03 14.34 14.42 2.86 表 7 同批次的铷原子钟类型卫星各模型精度
$ \bar{\sigma } $ 对比ns 卫星 FA-BP Elman RBF CNN-LSTM G30 1.58 5.08 0.22 6.16 G06 4.31 14.28 0.23 11.67 G09 3.72 11.24 0.23 7.25 G03 3.14 12.47 0.21 9.37 表 8 不同批次的铷原子钟类型卫星各模型精度
$ \bar{\sigma } $ 对比ns 卫星 FA-BP Elman RBF CNN-LSTM G01 4.48 11.93 0.02 5.21 G30 1.58 5.08 0.22 6.16 表 9 不同批次的铯原子钟类型卫星各模型精度
$ \bar{\sigma } $ 对比ns 卫星 FA-BP Elman RBF CNN-LSTM G08 0.64 3.13 0.09 1.26 G24 0.23 1.34 0.13 7.37 -
[1] HUANG B H, JI Z X, ZHAI R J, et al. Clock bias prediction algorithm for navigation satellites based on a supervised learning long short-term memory neural network[J]. GPS solutions. 2021, 25(2): 1-16. DOI: 10.1007/s10291-021-01115-0 [2] 毛悦, 宋小勇, 张清华, 等. BDS-3卫星钟在轨性能评估与分析[J]. 测绘学报, 2023, 52(3): 349-356. [3] 阚昊宇, 胡志刚, 吕逸飞, 等. 利用不同时间同步体制钟差评估北斗三号星载原子钟性能[J]. 武汉大学学报(信息科学版), 2023, 48(4): 604-610. [4] 胡超, 王中元, 王潜心, 等. 一种改进的BDS-2/BDS-3联合精密定轨系统偏差处理模型[J]. 武汉大学学报(信息科学版), 2021, 46(3): 360-370. [5] 吕栋, 欧吉坤, 于胜文. 基于MEA-BP神经网络的卫星钟差预报[J]. 测绘学报, 2020, 49(8): 993-1003. DOI: 10.11947/j.AGCS.2020.20200002 [6] 王威, 胡彩波, 赵鹤, 等. 一种LSTM神经网络在卫星钟频率快速变化期间钟差预报的应用[J]. 大地测量与地球动力学, 2023, 43(4): 369-373. [7] 王井利, 佟晓宇, 张梅. 基于PSO-Elman神经网络BDS导航卫星钟差预报[J]. 全球定位系统, 2023, 48(2): 120-126. DOI: 10.12265/j.gnss.2022183 [8] 王旭, 柴洪洲, 王昶. 卫星钟差预报的T-S模糊神经网络法[J]. 测绘学报, 2020, 49(5): 580-588. DOI: 10.11947/j.AGCS.2020.20190156 [9] 孟彩霞, 吴迪, 雷雨. 基于麻雀搜索算法优化的BP神经网络卫星钟差预报[J]. 大地测量与地球动力学, 2022, 42(2): 125-131. [10] 布金伟, 左小清, 常军, 等. BDS/GPS星载原子钟的短期钟差预报模型研究[J]. 天文学报, 2018, 59(1): 72-86. DOI: 10.15940/j.cnki.0001-5245.2018.01.007 [11] ZITOUNI F, HAROUS S, MAAMRI R. A novel quantum firefly algorithm for global optimization[J]. Arabian journal for science and engineering, 2021(46): 8741-8759. DOI: 10.1007/s13369-021-05608-5 [12] 王润, 王井利, 吕栋. 导航卫星钟差预报的Elman神经网络算法研究[J]. 大地测量与地球动力学, 2021, 41(3): 285-289,295. DOI: 10.14075/j.jgg.2021.03.012 [13] 张景元. 基于神经网络的卫星钟差预报研究[J]. 计算机工程与设计, 2014, 35(9): 3254-3257. DOI: 10.3969/j.issn.1000-7024.2014.09.053 [14] 栗然, 马涛, 张潇, 等. 基于卷积长短期记忆神经网络的短期风功率预测[J]. 太阳能学报, 2021, 42(6): 304-311. DOI: 10.19912/j.0254-0096.tynxb.2019-0209