Super-resolution optical camera for sky polarization field navigation
-
摘要: 天空偏振光场可以用于导航,但目前尚未出现一款可应用于实际的偏振导航系统,其原因之一是用于采集天空偏振光场的成像相机尚未有统一规格. 本文设计了一款可以兼顾天空偏振场导航的超分辨成像的偏振光学相机. 应用分焦平面偏振探测器实现快速偏振图像信息获取,采用快速移动平台与光学系统融合设计的方法满足对特殊高分辨率要求, 给出了相机系统的设计结果,介绍了超分辨偏振相机的标定方法并实现了精准标定,获取了用于图像与探测器之间位移控制的精准电压曲线. 应用该数据准确实现了对目标场景的偏振图像获取,同时高质量获取了天空偏振场分布数据. 本文所给出的研究结果具有达到衍射极限的成像能力,光学相机具有小于50 μm的场曲、小于0.7‰的畸变,同时又具有优于2倍及以上的超分辨成像能力,以高质量线偏振图像数据的获取为后续偏振精准导航和偏振特征测量提供原始数据基础.Abstract: The sky polarized light field can be used for navigation, but there is currently no polarization navigation system that can be applied in practical environment. One of the reasons is that the imaging camera used to collect the sky polarized light field is not standardized. This paper designs a super-resolution imaging polarization optical camera with the sky polarization field navigation. We apply a focal plane polarization detector to achieve the fast polarization image information acquisition and adopt a method of integrating fast moving platforms with optical systems to meet the special high-resolution requirements. This paper presents the design results of the camera system, introduces the calibration method of the super-resolution polarization camera and achieves the precise calibration. The precise voltage curve used for displacement control between the image and the detector is obtained. We utilize this data to accurately obtain polarization images of the target scene, while also obtaining the high-quality sky polarization field distribution data. The research results presented in this article have imaging capabilities that reach the diffraction limit. Optical cameras have the field curvature better than 50 μm, the distortion better than 0.7‰, and super-resolution imaging capabilities better than 2 times. The acquisition of high-quality linear polarization image data provides a raw data foundation for the subsequent polarization precise navigation and polarization feature measurement.
-
表 1 偏振相机的基本参数表
参数 指标 像素规模 2448×2048 像素尺寸 3.45μm×3.45μm 观测视场 对角线视场:30°
横纵视场:24.2°×20.3°畸变 优于0.7‰ 时间分辨率 30帧/秒 光学谱段 450~750 nm 功能 快速成像 超分辨 -
[1] ROSSEL S, WEHNER R. How bees analyse the polarization patterns in the sky: experiments and model[J]. Journal of comparative physiology A, 1984(154): 607-615. DOI: 10.1007/BF01350213 [2] KIRSCHFELD K. Navigation and compass orientation by insects according to the polarization pattern of the sky[J]. Zeitschrift für naturforschung C, 1988, 43(5-6): 467-9. DOI: 10.1515/znc-1988-5-624 [3] ROSSEL S. Navigation by bees using polarized skylight[J]. Comparative biochemistry and physiology part A, 1993, 104(4): 695-708. DOI: 10.1016/0300-9629(93)90146-U [4] LAMBRINOS D, KOBAYASHI H, PFEIFER R, et al. An autonomous agent navigating with a polarized light compass[J]. Adaptive behavior, 1997, 6(1): 131-161. DOI: 10.1177/105971239700600104 [5] LABHART T, MEYER E P. Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye[J]. Microscopy research and technique, 1999, 47(6): 368-79. DOI: 10.1002/(SICI)1097-0029(19991215)47:6<368::AID-JEMT2>3.0.CO;2-Q [6] LAMBRINOS D, MöLLER R, LABHART T, et al. A mobile robot employing insect strategies for navigation[J]. Robotics and autonomous systems, 2000, 30(1): 39-64. DOI: 10.1016/S0921-8890(99)00064-0 [7] CHAHL J, MIZUTANI A. Biomimetic attitude and orientation sensors[J]. IEEE sensors journal, 2010, 12(2): 289-297. DOI: 10.1109/JSEN.2010.2078806 [8] KARMAN S B, DIAHA S Z M, FUTTERKNECHTC O, et al. Towards a “Navigational Sense” for humans: biomimetic polarized light-based navigation system [C]// Applied Geoinformatics for Society and Environmen (AGSE) , 2012. [9] BARTA A, FARKAS A, SZáZ D, et al. Polarization transition between sunlit and moonlit skies with possible implications for animal orientation and Viking navigation: anomalous celestial twilight polarization at partial moon[J]. Applied optics, 2014, 53(23): 5193-5204. DOI: 10.1364/AO.53.005193 [10] HAMAOUI M. Polarized skylight navigation[J]. Applied optics, 2017, 56(3): B37-B46. DOI: 10.1364/AO.56.000B37 [11] GKANIAS E, RISSE B, MANGAN M, et al. From skylight input to behavioural output: a computational model of the insect polarised light compass[J]. PLoS computational biology, 2019, 15(7): e1007123. DOI: 10.1371/journal.pcbi.1007123 [12] ESHELMAN L M, SHAW J A. Visualization of all-sky polarization images referenced in the instrument, scattering, and solar principal planes[J]. Optical engineering, 2019, 58(8): 082418. DOI: 10.1117/1.OE.58.8.082418 [13] ESHELMAN L M, SMITH A M, SMITH K M, et al. Unique navigation solution utilizing sky polarization signatures[C]//The Polarization: Measurement, Analysis, And Remote Sensing, 2022: 1211203. [14] 晏磊, 关桂霞, 陈家斌, 等. 基于天空偏振光分布模式的仿生导航定向机理初探[J]. 北京大学学报:自然科学版, 2009, 45(4): 616-620. [15] 关桂霞, 晏磊, 陈家斌, 等. 天空偏振光分布的实验研究[J]. 兵工学报, 2011, 32(4): 459-463. [16] 高启升. 全天候天空散射光偏振模式研究 [D]. 大连: 大连理工大学, 2012. [17] 褚金奎, 张然, 王志文, 等. 仿生偏振光导航传感器研究进展[J]. 科学通报, 2016, 61(23): 2568-2577. [18] 高隽, 纪松, 谢昭, 等. 微观瑞利散射下的大气偏振建模仿真[J]. 系统仿真学报, 2012, 24(3): 677-683. [19] 高付民, 赵海盟, 杨福兴, 等. 仿生偏振导航光电测试系统的设计与实现[J]. 计算机工程与设计, 2012, 33(8): 3230-3234. DOI: 10.3969/j.issn.1000-7024.2012.08.063 [20] 王波, 高隽, 范之国, 等. 基于沙蚁 POL-神经元模型的航向角处理方法[J]. 光电工程, 2013, 40(10): 28-34. [21] 任建斌, 刘俊, 唐军, 等. 利用大气偏振模式确定太阳和太阳子午线空间位置法[J]. 光子学报, 2015, 44(7): 107-112. [22] 王玉杰, 胡小平, 练军想, 等. 仿生偏振视觉定位定向机理与实验[J]. 光学精密工程, 2016, 24(9): 2109-2116. [23] TANG J, ZHANG N, LI D L, et al. Novel robust skylight compass method based on full-sky polarization imaging under harsh conditions[J]. Optics express, 2016, 24(14): 15834-15844. DOI: 10.1364/OE.24.015834 [24] 张文静, 马龙, 赵立双, 等. 基于微偏振阵列成像的实时天空偏振光导航[J]. 传感器与微系统, 2019, 38(2): 9-15. [25] TANG J, WANG Y B, ZHAO D H, et al. Application of polarized light compass system on solar position calculation[J]. Optik - international journal for light and electron optics, 2019(187): 135-147. DOI: 10.1016/J.IJLEO.2019.04.129 [26] 蔡弘. 基于深度学习的多云天空偏振场方向特征识别 [D]. 大连: 大连理工大学, 2021. [27] 李宇阳, 王霞, 赵家碧, 等. 基于局部大气修复的偏振导航方法[J]. 兵工学报, 2023, 43(12): 3062-3069. [28] HORVáTH G, GáL J, POMOZI I, et al. Polarization portrait of the Arago point: video-polarimetric imaging of the neutral points of skylight polarization[J]. Naturwissenschaften, 1998, 85(7): 333-339. DOI: 10.1007/s001140050510 [29] WELD L D. A polarimeter for demonstrating the law of Malus[J]. Journal of the optical society of America, 1927, 15(1): 66-68. DOI: 10.1364/JOSA.15.000066