留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多源数据的BKlob模型精细化

刘家龙 朱永兴 贾小林 宋淑丽 程娜

刘家龙, 朱永兴, 贾小林, 宋淑丽, 程娜. 基于多源数据的BKlob模型精细化[J]. 全球定位系统, 2023, 48(3): 62-71. doi: 10.12265/j.gnss.2023092
引用本文: 刘家龙, 朱永兴, 贾小林, 宋淑丽, 程娜. 基于多源数据的BKlob模型精细化[J]. 全球定位系统, 2023, 48(3): 62-71. doi: 10.12265/j.gnss.2023092
LIU Jialong, ZHU Yongxing, JIA Xiaolin, SONG Shuli, CHENG Na. Refinement of BKlob model based on multi-source data[J]. GNSS World of China, 2023, 48(3): 62-71. doi: 10.12265/j.gnss.2023092
Citation: LIU Jialong, ZHU Yongxing, JIA Xiaolin, SONG Shuli, CHENG Na. Refinement of BKlob model based on multi-source data[J]. GNSS World of China, 2023, 48(3): 62-71. doi: 10.12265/j.gnss.2023092

基于多源数据的BKlob模型精细化

doi: 10.12265/j.gnss.2023092
基金项目: 国家自然科学基金(12073063);地理信息工程国家重点实验室基金(SKLGIE2020-M-1-1);山东省自然科学基金(ZR2021QD080)
详细信息
    作者简介:

    刘家龙:(1997—),男,博士,研究方向为GNSS数据处理及电离层监测

    通信作者:

    宋淑丽 E-mail: slsong@shao.ac.cn

  • 中图分类号: P288

Refinement of BKlob model based on multi-source data

  • 摘要: 北斗三号全球卫星导航系统(BDS-3)开通了全球服务,BDS Klobuchar(BDSklob)模型的服务区域也拓展至全球范围,BDSklob模型全球化后的性能引起了极大的关注. 针对北斗二号卫星导航系统(BDS-2)播发的BDSklob模型在服务区域外精度不高、两极地区改正异常情况,本文基于参数精化方法,利用经验模型IRI-Plas-2017、北斗全球广播电离层延迟修正模型(BDGIM),以及欧洲定轨中心(CODE)的全球电离层格网(GIM)产品多源数据提出新的BDSklob模型精细化方案多源数据精细化法. 结果表明:各个数据源精细化方法对BDSklob模型性能都有明显提升,尤其是在极地区域;BDSklob_C(数据源为CODE的GIM产品)处理结果精度最高;BDSklob_B(数据源为BDGIM)精度次之,但不借助外部数据源,在北斗系统中即可完成精化处理;BDSklob_I(数据源为IRI模型)精度稍差,但基于经验模型的预测性,可以满足实时精化处理的需要.

     

  • 图  1  GNSS观测站分布图

    图  2  多源数据精化前后BDSklob模型与CODG TEC偏差

    图  3  精化前后BDSklob模型在不同区域上的改正率

    图  4  精化前后BDSklob模型在不同区域上的RMS

    图  5  2019年DOY172多源数据精化前后BDSklob模型与GNSS实测TEC偏差

    图  6  以GNSS实测TEC为基准精化前后BDSklob模型在不同区域上的RMS

    图  7  2019年两分两至日XIA1测站定位精度

    图  8  XIA1测站定位误差序列图

    表  1  精化前后BDSklob模型全球及区域精度统计

    季节模型全球亚太地区
    PER/%RMS/TECUPER/%RMS/TECU
    春分BDSklob26.7764.9037.4015.11
    BDSklob_B39.147.0345.316.96
    BDSklob_C42.895.0149.765.14
    BDSklob_I33.6314.2237.9618.65
    夏至BDSklobb22.3012.3433.616.87
    BDSklob_B39.085.2646.684.60
    BDSklob_C39.095.1145.854.64
    BDSklob_I31.517.0136.337.84
    秋分BDSklobb24.0968.6733.8812.37
    BDSklob_B38.025.1248.594.72
    BDSklob_C39.744.7150.784.39
    BDSklob_I31.2911.2839.2615.51
    冬至BDSklobb38.2153.3245.869.30
    BDSklob_B46.426.7949.015.04
    BDSklob_C48.824.9750.774.41
    BDSklob_I37.7010.5435.848.84
    下载: 导出CSV
  • [1] KLOBUCHAR J A. Ionospheric time-delay algorithm for single-frequency GPS users[J]. IEEE transactions on aerospace and electronic systems, 1987(3): 325-331. DOI: 10.1109/TAES.1987.310829
    [2] SCHAER S. Mapping and predicting the earth's ionosphere using the global positioning system[D]. University of Berne, 1999.
    [3] WANG C, CHUANG S, LEI F, et al. Improved modeling of global ionospheric total electron content using prior information[J]. Remote sensing, 2018, 10(1): 63. DOI: 10.3390/rs10010063
    [4] ZHAO C B, YUAN Y B, ZHANG B C, et al. Ionosphere sensing with a low-cost, single-frequency, multi-gnss receiver[J]. IEEE transactions on geoscience and remote sensing, 2019, 57(2): 881-892. DOI: 10.1109/TGRS.2018.2862623
    [5] ZUS F, DENG Z, WICKERT J. The impact of higher-order ionospheric effects on estimated tropospheric parameters in precise point positioning[J]. Radio science, 2017, 52(8): 963-971. DOI: 10.1002/2017RS006254
    [6] SHI C, GU S F, LOU Y D, et al. An improved approach to model ionospheric delays for single-frequency precise point positioning[J]. Advances in space research, 2012, 49(12): 1698-1708. DOI: 10.1016/j.asr.2012.03.016
    [7] ZHU Y X, TAN S S, ZHANG Q H, et al. Accuracy evaluation of the latest BDGIM for BDS-3 satellites[J]. Advances in space research, 2019, 64(6): 1217-1224. DOI: 10.1016/j.asr.2019.06.021
    [8] WANG N B, LI Z S, YUAN Y B, et al. Beidou global ionospheric delay correction model (BDGIM): performance analysis during different levels of solar conditions[J]. GPS solutions, 2021, 25(3): 1-13. DOI: 10.1007/s10291-021-01125-y
    [9] YUAN Y B, WANG N B, LI Z S, et al. The beidou global broadcast ionospheric delay correction model (BDGIM) and its preliminary performance evaluation results[J]. Journal of the institute of navigation, 2019, 66(1): 55-69. DOI: 10.1002/navi.292
    [10] SWAMY K. Impact of high geomagnetic activity on Global Positioning System Satellite Signal (L-Band) delay and klobuchar algorithm performance over low latitudinal region[M]. Microelectronics, Electromagnetics and Telecommunications, 2018.
    [11] SHUKLA A K, DAS S, SHUKLA A P, et al. Approach for near-real-time prediction of ionospheric delay using Klobuchar-like coefficients for Indian region[J]. IET radar, sonar & navigation, 2013, 7(1): 67-74. DOI: 10.1049/iet-rsn.2011.0371
    [12] 何玉晶. GPS电离层延迟改正及其扰动监测的分析研究[D]. 郑州: 解放军信息工程大学, 2006.
    [13] 李维鹏, 李建文, 戴伟. Klobuchar电离层延迟改正模型精化方法的研究[J]. 测绘科学, 2009, 34(5): 49-51.
    [14] 高杨, 焦诚, 刘萧, 等. 利用中国区域电离层数据拟合Klobuchar参数[J]. 全球定位系统, 2014, 39(5): 37-40,45.
    [15] 朱进. 天文和测地VLBI物理模型的研究[D]. 南京: 南京大学, 1991.
    [16] 赵威, 张成义. Klobuchar 模型的实用分析与改进[J]. 空间科学学报, 2013, 33(6): 624-628.
    [17] WANG N B, YUAN Y B, LI Z S, et al. Improvement of Klobuchar model for GNSS single-frequency ionospheric delay corrections[J]. Advances in space research, 2016, 57(7): 1555-1569. DOI: 10.1016/j.asr.2016.01.010
    [18] 章红平, 平劲松, 朱文耀, 等. 电离层延迟改正模型综述[J]. 天文学进展, 2006, 24(1): 16-26.
    [19] 李猛, 廖瑛, 梁加红, 等. 电离层延迟模型改进研究[J]. 计算机仿真, 2009(10): 4.
    [20] WANG N B, LI Z S, HUO X L, et al. Refinement of global ionospheric coefficients for GNSS applications: methodology and results[J]. Advances in space research, 2019, 63(1): 343-358. DOI: 10.1016/j.asr.2018.09.021
    [21] ADEBIYI S J, ADIMULA I A, OLADIPO O A, et al. Assessment of IRI and IRI-Plas models over the African equatorial and low-latitude region[J]. Journal of geophysical research : space physics, 2016. DOI: 10.1002/2016JA022697
    [22] OGWALA A, EMMANUEL S O, PANDA S K, et al. Total electron content at equatorial and low-, middle- and high-latitudes in African longitude sector and its comparison with IRI-2016 and IRI-Plas 2017 models[J]. Advances in space research, 2020. DOI: 10.1016/j.asr.2020.07.013
    [23] SEZEN U, GULYAEVA T L, ARIKAN F. Online computation of international reference ionosphere extended to Plasmasphere(IRI-Plas) model for space weather[J]. Geodesy and geodynamics, 2018, 9(5): 347-357. DOI: 10.1016/j.geog.2018.06.004
    [24] SEKIDO M, KONDO T, KAWAI E, et al. Evaluation of GPS-based ionospheric TEC estimation and application to pulsar VLBI observation[J]. Communications research laboratory review, 2003, 38(4). DOI: 10.1029/2000RS002620
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  227
  • HTML全文浏览量:  97
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-18

目录

    /

    返回文章
    返回