Refinement of BKlob model based on multi-source data
-
摘要: 北斗三号全球卫星导航系统(BDS-3)开通了全球服务,BDS Klobuchar(BDSklob)模型的服务区域也拓展至全球范围,BDSklob模型全球化后的性能引起了极大的关注. 针对北斗二号卫星导航系统(BDS-2)播发的BDSklob模型在服务区域外精度不高、两极地区改正异常情况,本文基于参数精化方法,利用经验模型IRI-Plas-2017、北斗全球广播电离层延迟修正模型(BDGIM),以及欧洲定轨中心(CODE)的全球电离层格网(GIM)产品多源数据提出新的BDSklob模型精细化方案多源数据精细化法. 结果表明:各个数据源精细化方法对BDSklob模型性能都有明显提升,尤其是在极地区域;BDSklob_C(数据源为CODE的GIM产品)处理结果精度最高;BDSklob_B(数据源为BDGIM)精度次之,但不借助外部数据源,在北斗系统中即可完成精化处理;BDSklob_I(数据源为IRI模型)精度稍差,但基于经验模型的预测性,可以满足实时精化处理的需要.
-
关键词:
- BDS Klobuchar 模型 /
- 精细化 /
- 全球参考电离层模型(IRI模型) /
- 全球电离层格网(GIM) /
- 广播电离层模型
Abstract: BDS-3 has launched global services, and the service area of the BDS Klobuchar (BDSklob) model has also expanded to a global scale. The global performance of the BDSklob model has also attracted great attention. In response to the low accuracy of the BDSklob model outside the service area and abnormal correction in polar regions during the BDS-2 period, this paper proposes a new BDSklob model refinement scheme-multi-source data refinement method-based on parameter refinement method, using empirical models IRI-Plas-2017, BDGIM model, and multi-source data from CODE’s GIM products. The results show that the refinement methods of various data sources have significantly improved the performance of the BDSklob model, especially in polar regions; BDSklob_ C (GIM product with CODE data source) has the highest processing accuracy; BDSklob_ B (data source is BDGIM) takes the second place in accuracy, but without the help of external data sources, refinement processing can be completed in the Beidou system; BDSklob_ the accuracy of I (data source is IRI model) is slightly poor, but based on the predictive ability of empirical models, it can meet the needs of real-time refinement processing.-
Key words:
- BDS Klobuchar model /
- refinement /
- IRI model /
- GIM /
- broadcast ionospheric model
-
表 1 精化前后BDSklob模型全球及区域精度统计
季节 模型 全球 亚太地区 PER/% RMS/TECU PER/% RMS/TECU 春分 BDSklob 26.77 64.90 37.40 15.11 BDSklob_B 39.14 7.03 45.31 6.96 BDSklob_C 42.89 5.01 49.76 5.14 BDSklob_I 33.63 14.22 37.96 18.65 夏至 BDSklobb 22.30 12.34 33.61 6.87 BDSklob_B 39.08 5.26 46.68 4.60 BDSklob_C 39.09 5.11 45.85 4.64 BDSklob_I 31.51 7.01 36.33 7.84 秋分 BDSklobb 24.09 68.67 33.88 12.37 BDSklob_B 38.02 5.12 48.59 4.72 BDSklob_C 39.74 4.71 50.78 4.39 BDSklob_I 31.29 11.28 39.26 15.51 冬至 BDSklobb 38.21 53.32 45.86 9.30 BDSklob_B 46.42 6.79 49.01 5.04 BDSklob_C 48.82 4.97 50.77 4.41 BDSklob_I 37.70 10.54 35.84 8.84 -
[1] KLOBUCHAR J A. Ionospheric time-delay algorithm for single-frequency GPS users[J]. IEEE transactions on aerospace and electronic systems, 1987(3): 325-331. DOI: 10.1109/TAES.1987.310829 [2] SCHAER S. Mapping and predicting the earth's ionosphere using the global positioning system[D]. University of Berne, 1999. [3] WANG C, CHUANG S, LEI F, et al. Improved modeling of global ionospheric total electron content using prior information[J]. Remote sensing, 2018, 10(1): 63. DOI: 10.3390/rs10010063 [4] ZHAO C B, YUAN Y B, ZHANG B C, et al. Ionosphere sensing with a low-cost, single-frequency, multi-gnss receiver[J]. IEEE transactions on geoscience and remote sensing, 2019, 57(2): 881-892. DOI: 10.1109/TGRS.2018.2862623 [5] ZUS F, DENG Z, WICKERT J. The impact of higher-order ionospheric effects on estimated tropospheric parameters in precise point positioning[J]. Radio science, 2017, 52(8): 963-971. DOI: 10.1002/2017RS006254 [6] SHI C, GU S F, LOU Y D, et al. An improved approach to model ionospheric delays for single-frequency precise point positioning[J]. Advances in space research, 2012, 49(12): 1698-1708. DOI: 10.1016/j.asr.2012.03.016 [7] ZHU Y X, TAN S S, ZHANG Q H, et al. Accuracy evaluation of the latest BDGIM for BDS-3 satellites[J]. Advances in space research, 2019, 64(6): 1217-1224. DOI: 10.1016/j.asr.2019.06.021 [8] WANG N B, LI Z S, YUAN Y B, et al. Beidou global ionospheric delay correction model (BDGIM): performance analysis during different levels of solar conditions[J]. GPS solutions, 2021, 25(3): 1-13. DOI: 10.1007/s10291-021-01125-y [9] YUAN Y B, WANG N B, LI Z S, et al. The beidou global broadcast ionospheric delay correction model (BDGIM) and its preliminary performance evaluation results[J]. Journal of the institute of navigation, 2019, 66(1): 55-69. DOI: 10.1002/navi.292 [10] SWAMY K. Impact of high geomagnetic activity on Global Positioning System Satellite Signal (L-Band) delay and klobuchar algorithm performance over low latitudinal region[M]. Microelectronics, Electromagnetics and Telecommunications, 2018. [11] SHUKLA A K, DAS S, SHUKLA A P, et al. Approach for near-real-time prediction of ionospheric delay using Klobuchar-like coefficients for Indian region[J]. IET radar, sonar & navigation, 2013, 7(1): 67-74. DOI: 10.1049/iet-rsn.2011.0371 [12] 何玉晶. GPS电离层延迟改正及其扰动监测的分析研究[D]. 郑州: 解放军信息工程大学, 2006. [13] 李维鹏, 李建文, 戴伟. Klobuchar电离层延迟改正模型精化方法的研究[J]. 测绘科学, 2009, 34(5): 49-51. [14] 高杨, 焦诚, 刘萧, 等. 利用中国区域电离层数据拟合Klobuchar参数[J]. 全球定位系统, 2014, 39(5): 37-40,45. [15] 朱进. 天文和测地VLBI物理模型的研究[D]. 南京: 南京大学, 1991. [16] 赵威, 张成义. Klobuchar 模型的实用分析与改进[J]. 空间科学学报, 2013, 33(6): 624-628. [17] WANG N B, YUAN Y B, LI Z S, et al. Improvement of Klobuchar model for GNSS single-frequency ionospheric delay corrections[J]. Advances in space research, 2016, 57(7): 1555-1569. DOI: 10.1016/j.asr.2016.01.010 [18] 章红平, 平劲松, 朱文耀, 等. 电离层延迟改正模型综述[J]. 天文学进展, 2006, 24(1): 16-26. [19] 李猛, 廖瑛, 梁加红, 等. 电离层延迟模型改进研究[J]. 计算机仿真, 2009(10): 4. [20] WANG N B, LI Z S, HUO X L, et al. Refinement of global ionospheric coefficients for GNSS applications: methodology and results[J]. Advances in space research, 2019, 63(1): 343-358. DOI: 10.1016/j.asr.2018.09.021 [21] ADEBIYI S J, ADIMULA I A, OLADIPO O A, et al. Assessment of IRI and IRI-Plas models over the African equatorial and low-latitude region[J]. Journal of geophysical research : space physics, 2016. DOI: 10.1002/2016JA022697 [22] OGWALA A, EMMANUEL S O, PANDA S K, et al. Total electron content at equatorial and low-, middle- and high-latitudes in African longitude sector and its comparison with IRI-2016 and IRI-Plas 2017 models[J]. Advances in space research, 2020. DOI: 10.1016/j.asr.2020.07.013 [23] SEZEN U, GULYAEVA T L, ARIKAN F. Online computation of international reference ionosphere extended to Plasmasphere(IRI-Plas) model for space weather[J]. Geodesy and geodynamics, 2018, 9(5): 347-357. DOI: 10.1016/j.geog.2018.06.004 [24] SEKIDO M, KONDO T, KAWAI E, et al. Evaluation of GPS-based ionospheric TEC estimation and application to pulsar VLBI observation[J]. Communications research laboratory review, 2003, 38(4). DOI: 10.1029/2000RS002620