Signal quantization loss analysis based on automatic gain control
-
摘要: 在卫星信号接收的过程中,量化是模数转换的重要环节,信号量化会带来能量损失,对于信号后续的处理产生影响,根据信号特性选取合适的量化位数和系统基准功率可以有效改善这种损失. 本文采用量化前后信号信噪比(signal to noise ratio,SNR)对比的形式来直观表示量化损耗,并给出了一般性分析公式. 说明了自动增益控制(automatic gain control,AGC)模块在信号量化中的作用,结合量化损耗公式,通过确定最佳增益系数给出了一种基准功率的选取方式,使得不同SNR的信号量化损耗明显降低. 仿真结果表明:在低位量化时,该方式对卫星导航信号的量化损耗能改善约1.5 dB. 该分析对于接收机的设计以及工程实现具有一定的参考意义.Abstract: Quantization is an important part of analog-to-digital conversion in satellite signal reception. Signal quantization brings energy loss, which affects the subsequent signal processing. It can effectively improve this loss on choosing appropriate quantization bits and system reference power according to signal characteristics. The quantization loss is visually expressed in the form of signal-to-noise ratio comparison, and a general analysis formula is introduced. The function of automatic gain control (AGC) module in signal quantization is explained. Combined with quantization loss formula, a selection method of reference power is explained by determining the best gain coefficient, which makes the quantization loss of signals with different signal-to-noise ratios obviously reduced. Simulation results show that this method can improve the quantization loss of satellite navigation signals by about 1.5 dB when quantizing low bits. It has certain reference significance for the design and engineering implementation of the receiver.
-
Key words:
- quantification /
- gain control /
- signal-to-noise ratio /
- A/D conversion /
- reference power /
- receiver
-
表 1 −20 dB信号不同参考功率下量化损耗对比
量化位数/
bit最佳增益
系数(Ag)期望功率
(Pe)期望功率
量化损耗/dB基准功率
量化损耗/dB2 0.14 7.0 –0.550 –1.84 3 0.24 12.0 –0.160 –1.65 4 0.40 20.0 –0.050 –1.34 5 0.74 37.0 –0.015 –0.84 6 1.36 68.0 –0.004 –0.26 -
[1] 刘小汇, 黄龙, 谢金石. 高斯信号的量化分析[J]. 国防科技大学学报, 2011, 33(5): 145-149. [2] 韩晓飞, 马绪瀛. 北斗卫星导航系统定位性能评估[J]. 工程勘察, 2015, 43(4): 83-87. [3] 张超, 李智, 潘长勇. 一种基于多级维纳滤波器的导航信号抗干扰自适应处理装置[J]. 现代电子技术, 2015, 38(22): 1-3. [4] 王世练, 张尔扬. 直扩数字接收机中AD量化比特数的确定[J]. 通信学报, 2004, 25(8): 124-128. [5] 魏颖康, 谈展中. GPS抗干扰接收机中高性能ADC应用[J]. 电子测量技术, 2003(4): 34-35. DOI: 10.3969/j.issn.1002-7300.2003.04.019 [6] 胡海娜, 张颂. 量化位数对导航直扩接收机相关处理的影响研究[J]. 遥测遥控, 2009, 30(4): 40-44. [7] 王海洲, 郭承军. 信号量化对导航系统抗干扰性能的影响分析[J]. 科学技术与工程, 2018, 18(11): 260-263. [8] 孟建, 王春丽, 李其勤. 量化位数对GPS转发干扰的影响研究[J]. 电子对抗技术, 2002, 17(2): 11-16. [9] 孙进芳, 李晓白, 金天. 量化对GPS接收机捕获性能的影响[J]. 雷达科学与技术, 2007, 5(6): 477-480. [10] 谢钢. GPS原理与接收机技术[M]. 北京: 电子工业出版社, 2009. [11] BORIO D. A statistical theory for GNSS signal acquisition[D]. Italvy: Politecnico di Torino, 2008: 88-102. [12] PARKINSON B W, SPILKER J J. Global positioning system: theory and application[M]. Cambrige: American Instituteof Aeronautics and Astronautics, 1996: 324-407. [13] 耿云辉, 冯西安, 张路, 等. 一种大动态范围AGC电路的设计与实现[J]. 微处理机, 2012, 33(3): 20-23,28. [14] 伍丹, 吴玉成, 刘阳, 等. 数字接收机中自动增益控制技术设计[J]. 微计算机信息, 2010, 26(19): 138-139,16. [15] 李飚, 刘春群, 黄忠快. 基于FPGA射频接收机前端AGC系统电路的设计[J]. 无线电通信技术, 2016, 42(3): 82-84. [16] 蔡凌云, 方振和, 李铭祥, 等. 自动增益控制技术应用[J]. 电子工程师, 2002, 28(4): 22-23,37. [17] 朱启. 北斗导航系统接收机中自动增益控制的设计与实现[D]. 西安: 西安电子科技大学, 2011. [18] 陈建军. 抗干扰接收机自动增益控制技术研究[D]. 长沙: 国防科学技术大学, 2006.