NLoS error suppression algorithm based on two-step Kalman filtering
-
摘要: 针对超宽带(ultra wide band,UWB)定位中影响定位精度的非视距(non line of sight, NLoS)传播误差问题,提出了一种基于Kalman滤波的NLoS误差二次消除方法. 该方法利用NLoS误差与测量误差之间的相互独立性,借助Kalman滤波将NLoS误差从总误差中单独分离出来,对其进行实时估计,并将该NLoS误差估计值作为NLoS误差辨别及测距值修正的依据. 通过Kalman滤波对到达时间(time of arrival, TOA)测距值进行二次估计、鉴别及修正以提高TOA测距精度,从而实现室内复杂环境下的UWB精准实时定位. 仿真实验结果表明:该方法不仅能够对NLoS误差实现良好的跟踪估计,对视距(line of sight, LoS)/NLoS环境转变也具有较强的灵敏感知能力,同时NLoS误差测距值在应用该方法后的定位性能逼近于LoS环境下的理想状态.Abstract: In order to solve the problem of non-line-of-sight propagation error which affects the positioning accuracy in ultra wide band (UWB) positioning, a secondary elimination method of non line of sight (NLoS) error based on kalman filtering is proposed. This method makes use of the mutual independence between the NLoS error and the measurement error, separates the NLoS error from the total error with the help of Kalman filter, estimates it in real time, and uses the estimated value of the NLoS error as the basis for NLoS error identification and distance measurement correction. Time of arrival (TOA) ranging accuracy is improved by secondary estimation, discrimination and correction of TOA ranging value through Kalman filtering, thus accurate real-time positioning of UWB in indoor complex environment is realized. The simulation results show that this method can not only track and estimate NLoS errors, but also has strong sensitivity to the transition of line-of-sight (LoS)/NLoS environment. The location performance of NLoS error measurements after applying this method is close to the ideal state in LoS environment.
-
表 1 不同环境下的模型参数
无线信道环境 $ {T_1}/{\text{μs}} $ $\varepsilon $ ${\sigma _\xi }/{\text{dB}}$ 繁华市区 0.90 0.5 4 一般市区 0.40 0.5 4 郊区 0.20 0.5 4 远郊 0.10 0.5 4 山区 0.45 1.0 6 -
[1] 马祥泰, 史增凯, 钱昭勇, 等. 基于北斗卫星导航系统非组合精密单点定位算法的精密授时精度研究[J]. 电子与信息学报, 2022, 44(9): 3203-3211. [2] 杨子辉, 薛彬. 北斗卫星导航系统的发展历程及其发展趋势[J]. 导航定位学报, 2022, 10(1): 1-14. [3] 刘晨. 基于改进高斯-牛顿法的NLOS误差消除三维定位模型[J]. 全球定位系统, 2023, 48(1): 71-76. [4] LI C T, CHENG J C P, CHEN K Y. Top 10 technologies for indoor positioning on construction sites[J]. Automation in construction, 2020, (118): 103309. DOI: 10.1016/j.autcon.2020.103309 [5] 李英明, 任升莲, 陈义华, 等. 基于无线数据的高精度超宽带定位方法综述[J]. 测控技术, 2022, 41(, 7): 1-9. [6] CAPRA M, SAPIENZA S, ROS P, et al. Assessing the feasibility of augmenting fall detection systems by relying on UWB-based position tracking and a home robot[J]. Sensors, 2020, 20(18): 5361. DOI: 10.3390/s20185361 [7] COSSETTE C C, SHALABY M, SAUSSIÉ D, et al. Relative position estimation between two UWB devices with IMUs[J]. IEEE robotics and automation letters, 2021, 6(3): 4313-4320. DOI: 10.1109/LRA.2021.3067640 [8] 张晨, 王韦刚, 许晨东, 等. 一种基于TOA的非视距误差优化定位算法[J]. 南京邮电大学学报(自然科学版), 2022, 42(4): 56-63. [9] 盛坤鹏, 王坚, 李晨辉, 等. 非视距误差改正的超宽带定位模型研究[J]. 测绘科学, 2021, 46(3): 40-47. [10] 徐淑萍, 王双, 郭宇, 等. 一种抗非视距误差的组合定位算法[J]. 科学技术与工程, 2021, 21(31): 13405-13412. [11] 戢静红. 基于NLOS传播环境识别与误差消除的无线定位技术研究[D]. 成都: 西南交通大学, 2021. [12] CHAN Y T, HO K C. A simple and efficient estimator for hyperbolic location[J]. IEEE transactions on signal processing, 1994, 42(8): 1905-1915. DOI: 10.1109/78.301830 [13] CHEN P C. A non-line-of-sight error mitigation algorithm in location estimation[C]//IEEE Wireless Communications and Networking Conference, 1999. DOI: 10.1109/WCNC.1999.797838 [14] WYLIE M P, HOLTZMAN J M. The non-line of sight problem in mobile location estimation[C]//ICUPC 5th International Conference on Universal Personal Communications. IEEE, 1996. DOI: 10.1109/ICUPC.1996.562692 [15] ZHANG M Y, WANG J H, JI Z M. A novel algorithm of NLOS error mitigation based on Kalman filter in cellular wireless location[C]//The 5th International Conference on Wireless Communications, Networking and Mobile Computing, 2009. DOI: 10.1109/WICOM.2009.5302929 [16] 王长强, 徐爱功, 隋心. UWB测距的NLOS误差削弱方法[J]. 导航定位学报, 2017, 5(3): 24-27, 32. [17] 畅田田, 王威, 高婧洁, 等. 基于信道测量实验的NLOS误差消除方法对比研究[J]. 西北工业大学学报, 2022, 40(4): 865-874. [18] 阳士宇. NLOS环境下基于UWB的室内定位算法研究[D]. 阜新: 辽宁工程技术大学, 2022. [19] 李新春, 阳士宇, 张玉琛, 等. 削减NLOS误差的UWB室内定位算法[J]. 重庆邮电大学学报(自然科学版), 2022, 34(5): 758-765. [20] 西蒙·赫金, 著, 郑宝玉, 等, 译. 自适应滤波器原理[M]. 北京: 电子工业出版社, 2003. [21] 程华, 张雪婷, 房一泉. 基于扩散卡尔曼滤波算法的目标跟踪估计[J]. 计算机应用与软件, 2021, 38(2): 191-197, 238. [22] 程雪聪, 刘福才, 黄茹楠. 基于卡尔曼滤波和粒子滤波融合的UWB室内定位算法[J]. 计量学报, 2022, 43(10): 1335-1340. [23] 唐娴. 一种基于改进Kalman滤波的多传感器室内定位方案[J]. 计算机应用与软件, 2021, 38(7): 113-119. [24] 朱雯婷. 自组织网络节点NLOS误差识别、抑制与定位算法仿真研究[D]. 西安: 中国科学院大学(中国科学院国家授时中心), 2021.