Overview of characteristics and development of shadowed space positioning and navigation technology
-
摘要: 以地下管廊、楼宇室内等为代表的遮蔽空间具有的狭长封闭物理结构以及复杂信道特征,给高精度定位导航带来了巨大挑战. 本文针对遮蔽空间典型场景以及技术手段做了梳理和适应性分析,并对遮蔽空间高精度导航定位面临的问题和挑战进行了量化分析,对遮蔽空间定位系统后续发展进行了展望,设计了适用于遮蔽空间复杂环境下规模可伸缩定位导航系统架构. 基于超宽带(ultra wide band,UWB)、北斗伪卫星、近超声定位等多模体制形成混合定位网络,可实现遮蔽空间全场景覆盖,相比目前常用的无线电定位系统,本文设计的定位导航系统架构在定位精度、覆盖性能等方面有显著提升.Abstract: The long and narrow closed physical structures and complex channel characteristics of sheltered spaces, such as underground pipe corridors and building interiors, pose a significant challenge to high-precision positioning and navigation. This article combs and analyzes the adaptability of typical scenarios and technical means in sheltered space, and quantifies the challenges faced by high-precision navigation and positioning in sheltered space. The future development of sheltered space positioning systems is prospected, and a high-precision positioning and navigation system architecture suitable for complex environments in sheltered space is designed. The network diagram is integrated. A hybrid positioning network is built based on multimode systems such as ultra wide band (UWB), BeiDou pseudo-satellite, and near-ultrasonic positioning to achieve full scene coverage in sheltered space. Compared with currently commonly used radio positioning systems, it has achieved significant improvements in positioning accuracy, coverage performance, and other aspects.
-
Key words:
- shelter space /
- scenario analysis /
- means analysis /
- technical challenges /
- system architecture
-
表 1 典型技术手段特征及适用场景分析
序号 技术
手段适用场景 典型指标 优缺点 1 UWB 合作、非合作场景定位 最高可达厘米级,
典型指标0.3 m精度高,室内抗多径;
存在自主可控芯片器件问题2 4G、5G 较开阔室内合作场景 最高可达亚米级 通信导航一体化;
成本高,室内复杂环境定位精度下降3 ZigBee定位 合作/非合作空间定位 优于3 m 成本低,技术成熟;
精度较低4 蓝牙 合作空间节点定位 最高可达亚米级 覆盖范围小,易受干扰 5 北斗伪卫星 较开阔室内合作场景 最高可达亚米级 室内外连续定位,技术成熟;
室内复杂环境定位精度下降.6 人员穿戴惯导传感器 非合作空间人员自主定位 1%D~3‰D
(1 000 m距离误差3 m)人员可穿戴;
精度随距离发散7 激光/视觉SLAM 非合作空间无人自主定位 3‰D~5‰D
(1 000 m距离误差5 m)实时测图定位;
精度随距离发散.8 声学定位 金属遮蔽环境定位 优于1 m 成本低,不受电磁干扰;
覆盖范围较小、动态性能受限.9 可见光定位 合作空间定位 优于2 m 覆盖范围小,受光线传播环境影响 -
[1] PADOIS T, GAUTHIER P-A, BERRY A. Inverse problem with beamforming regularization matrix applied to sound source localization in closed wind-tunnel using microphone array[J]. Journal of sound and vibration, 2014, 333(25): 6858-6868. DOI: 10.1016/J.JSV.2014.07.028 [2] GRONDIN F, MICHAUD F. Lightweight and optimized sound source localization and tracking methods for open and closed microphone array configurations[J]. Robotics and autonomous systems, 2018(113): 63-80. DOI: 10.1016/j.robot.2019.01.002 [3] 孟宇, 肖小凤, 赵坤. 基于UWB的地下定位算法和拓扑优化[J]. 工程科学学报, 2018, 40(6): 743-753. [4] 施铭, 付慧敏, 钱云贵, 等. ZigBee无线自组网技术在综合管廊机器人控制系统中的应用[J]. 电力与能源, 2019, 40(6): 728-731. [5] 李波. 巷道型受限空间即时定位与地图构建研究[D]. 徐州: 中国矿业大学. [6] RAVAL S, BANERJEE B P, SINGH S K, et al. A preliminary investigation of mobile mapping technology for underground mining[C]//IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019: 6071-6074. DOI: 10.1109/IGARSS.2019.8898518 [7] EBADI K, CHANG Y, PALIERI M, et al. LAMP: Large-scale autonomous mapping and positioning for exploration of perceptually-degraded subterranean environments[C]//IEEE International Conference on Robotics and Automation (ICRA) IEEE, 2020: 80-86. DOI: DOI: 10.48550/arXiv.2003.01744 [8] CHANG Y, EBADI K, DENNISTON C E, et al. LAMP 2.0: A robust multi-robot SLAM system for operation in challenging large-scale underground environments[J]. IEEE robotics and automation letters, 2022, 7(4): 9175-9182. DOI: 10.1109/LRA.2022.3191204 [9] DENNISTON C E, CHANG Y, REINKE A, et al. Loop closure prioritization for efficient and scalable multi-robot SLAM[J]. IEEE robotics and automation letters, 2022, 7(4): 9651-9658. DOI: 10.1109/LRA.2022.3191156 [10] EGLISTON B, CARTER M. The metaverse and how we’ll build it: the political economy of Meta’s Reality Labs[J]. New media and society, 2022. DOI: 10.1177/14614448221119785 [11] 王韦刚, 周蓉, 张云伟, 等. 基于场强地图的室内定位技术研究[J]. 邮电设计技术, 2020(4): 27-34. [12] 杨梦莹. 基于开放式通信平台的无线环境图构建与覆盖容量自优化[D]. 北京: 北京邮电大学, 2021.