Research on joint TOA estimation algorithm based on baseband mode S signal
-
摘要: 针对广域多点定位系统中接收信号信噪比(signal to noise ratio, SNR)低导致到达时间(time of arrival, TOA)提取不准确的问题,提出了一种匹配滤波结合非相干积累的联合TOA估计算法,该算法能够有效降低匹配滤波法在低SNR下TOA估计的均方根误差(root mean square error, RMSE). 联合算法通过对二次雷达驻留时间内接收的应答信号的匹配滤波输出做非相干积累,在最大值点处标记时间戳进行TOA估计,利用能量累积原理提高SNR,从而使得估计精确度得以提升. 仿真结果表明:该算法可在−15 dB SNR,53 MHz采样频率及9个积累信号时,达到24.302 ns的TOA估计精确度. 所提联合TOA估计算法具有高精确度与高稳健性的特点,能够在−15~0 dB SNR 将估计精确度提升至25 ns以下,为提取低SNR S模式信号TOA进而提升广域多点定位精确度提供了一种有效的方法.Abstract: Aiming at the problem of inaccurate time of arrival (TOA) extraction caused by low signal-to-noise ratio (SNR) of received signals in wide area multilateration system, a joint TOA estimation algorithm combining matched filter and non-coherent integration is proposed, which can effectively reduce the root mean square error (RMSE) of the matched filter TOA estimation method under low SNR. The joint algorithm does the non-coherent integration of the matched filter output of the received reply signals within the dwell time of the secondary surveillance radar, marks a time stamp at the maximum point for TOA estimation, and uses the principle of energy accumulation to improve the SNR, so as to improve the estimation accuracy. The simulation results show that the algorithm can achieve a TOA estimation accuracy of 24.302 ns at −15 dB SNR, 53 MHz sampling frequency and 9 accumulated signals. The proposed joint TOA estimation algorithm has the characteristics of high accuracy and high robustness, and can improve the estimation accuracy to less than 25 ns at the SNR of −15 dB to 0 dB. It provides an effective method for extracting the TOA of mode S signals with low SNR and improving the positioning accuracy of wide area multilateration.
-
表 1 飞机与雷达参数
参数 取值 飞机巡航速度 828 km/h 天线波束宽度 2.7° 天线转速 10 r/min 脉冲重复频率 200 Hz 表 2 不同S模式信号分类
S模式信号形式 DF字段 内容 二次雷达全呼叫应答 11 ICAO地址 二次雷达选择呼叫应答 4,5,20,21 ICAO地址、飞机代码、
高度、数据链路ADS-B 17,18,19 ICAO地址、飞机代码、
ADS-B信息、高度TCAS 0,16 ICAO地址、高度、空/空协同 表 3 SNR与非相干积累信噪功率比提升效果的关系
SNR ${R_{ {\text{SNPF} } } }/{R_{ {\text{SNPM} } } }$ >0 dB ≈2.5${N_{{\text{ncoh}}}}$ −23~0 dB 1~2.5${N_{{\text{ncoh}}}}$ <−23 dB ≤1 表 4 联合算法误差分布
TOA估计算法 信号数目/个 主要误差分布/ns 匹配滤波 1 −3600~3800 联合算法 2 −1000~1100 9 −80~80 -
[1] CHAN Y T, LEE B H, INKOL R, et al. Estimation of pulse parameters by autoconvolution and least squares[J]. IEEE transactions on aerospace and electronic systems, 2010, 46(1): 363-374. DOI: 10.1109/TAES.2010.5417168 [2] D'AMICO A A, MENGALI U, TAPONECCO L. Energy-based TOA estimation[J]. IEEE transactions on wireless communications, 2008, 7(3): 838-847. DOI: 10.1109/TWC.2008.060545 [3] 谭钏章, 李宏伟, 樊昌周. 基于相关累积的雷达信号到达时间估计算法[J]. 弹箭与制导学报, 2018, 38(1): 161-164. DOI: 10.15892/j.cnki.djzdxb.2018.01.037 [4] 王洪, 刘昌忠, 汪学刚, 等. S 模式前导脉冲检测方法[J]. 电子科技大学学报, 2010, 39(4): 486-489. DOI: 10.3969/j.issn.1001-0548.2010.04.002 [5] 曾丽丽, 陈梦娇, 徐自励, 等. 机场站坪区域中多点定位系统检测率的提升[J]. 太赫兹科学与电子信息学报, 2021, 19(3): 391-397. DOI: 10.11805/TKYDA2020680 [6] 张尉, 何康. 空管二次雷达[M]. 北京: 国防工业出版社, 2017. [7] 周旋. 基于TDOA的民航多点定位算法研究[D]. 昆明: 昆明理工大学, 2018. [8] 檀倩倩. 数字阵列雷达波束驻留调度技术研究[D]. 成都: 电子科技大学, 2021. [9] 陈林凤, 任文龙. S模式新技术在航管二次雷达中的应用[J]. 电子测试, 2020(20): 65-67. DOI: 10.3969/j.issn.1000-8519.2020.20.024 [10] 王亚涛. 空管二次雷达S模式询问机目标捕获与监视实现方案[J]. 电讯技术, 2010, 50(7): 71-75. DOI: 10.3969/j.issn.1001-893x.2010.07.015 [11] ZHOU Y D, GANG X, DU Y L, et al. An adaptive sampling VB-IMM based on ADS-B for TCAS data fusion with benefit analysis[J]. Journal of aeronautics, astronautics and aviation, 2017, 49(1): 11-24. DOI: 10.6125/16-1014-907 [12] 曹雅茹. 基于差分匹配滤波器的TOA提取与评估研究[D]. 天津: 中国民航大学, 2020. [13] 程林. 低信噪比条件下的雷达信号检测技术研究[D]. 北京: 中国舰船研究院, 2015.