RTK/B2b-PPP fusion switching positioning technology based on BDS-3/GPS
-
摘要: 针对远海、沙漠等网络实时动态(real-time kinematic, RTK)载波相位差分技术通讯信号容易中断的应用场景,提出了一种基于北斗三号(BeiDou-3 Navigation Satellite System, BDS-3)/GPS双系统的RTK/B2b-PPP融合切换定位技术. 充分利用网络RTK收敛快、定位精度高和B2b-PPP单站定位、覆盖范围广的特点,将网络RTK获取的高精度位置坐标作为先验信息,与B2b-PPP融合以辅助B2b-PPP快速收敛. 通过分时段多组数据的采样分析,结果表明:RTK固定解与B2b-PPP融合定位精度在东(east,E)、北(north,N)、天顶(up,U)方向分别为2.57 cm、0.90 cm、2.83 cm,较独立B2b-PPP定位大幅提高;RTK固定解与B2b-PPP融合1 s后,便可帮助B2b-PPP瞬时收敛,RTK中断后初期精度达到厘米级,0.5 h后逐渐过渡到B2b-PPP独立定位精度水平,表明B2b-PPP可作为网络RTK的有效补充手段,在RTK差分中断后,能够有效维持高精度定位水平.
-
关键词:
- 实时动态(RTK) /
- B2b-PPP /
- 北斗三号(BDS-3)/GPS组合 /
- 融合切换 /
- 收敛时间
Abstract: In order to solve the problem that network real-time kinematic (RTK) communication signals are easy to be interrupted in the remote sea and desert, a switching technology of RTK/B2b-PPP fusion based on BeiDou-3 Navigation Satellite System (BDS-3)/GPS is proposed, which makes full use of the characteristics of fast convergence and high positioning accuracy of network RTK and wide coverage,single station positioning of B2b-PPP. The high-precision position coordinates obtained by network RTK are used as priori information and integrated with B2b-PPP to assist B2b-PPP converge fast. The results show that the positioning accuracy of RTK fixed solution and B2b-PPP fusion is 2.57 cm, 0.90 cm and 2.83 cm in the east (E), north (N) and up (U) directions, respectively, which is much higher than that of independent B2b-PPP positioning. In addition, after the fusion of RTK fixed solution and B2b-PPP for 1 s, it can help the instantaneous convergence of B2b-PPP. After the interruption of RTK, the initial accuracy reaches the level of cm, and gradually transitions to the independent positioning accuracy level of B2b-PPP after 0.5 h, indicating that B2b-PPP can be used as an effective means to supplement the network RTK. Can effectively maintain high precision positioning level.-
Key words:
- RTK /
- B2b-PPP /
- BDS-3/GPS combination /
- fusion switching /
- convergence time
-
表 1 非差非组合PPP模型信息与误差处理策略
模型信息/误差项 处理策略 选用频率 BDS-3:B1I、B3I;GPS:L1、L2 卫星钟差 PPP-B2b钟差改正数 卫星轨道误差 PPP-B2b轨道改正数 卫星硬件延迟 PPP-B2b DCB改正数 卫星天线相位中心偏差 模型估计 电离层延迟 参数估计+随机游走 对流层延迟 参数估计+随机游走 地球自转效应 模型估计 相对论效应 模型估计 潮汐影响 模型估计 接收机钟差 参数估计+白噪声 接收机硬件延迟 包含在接收机钟差中估计 整周模糊度 参数估计+随机游走 周跳探测 MW+GF 截止高度角 10° 表 2 PPP-B2b播发信息类型
信息类型(十进制) 信息内容 1 卫星掩码 2 卫星轨道改正数及用户测距精度指数 3 码间偏差改正数 4 卫星钟差改正数 表 3 信息标称有效期
信息类型 信息内容 标称有效期/s 1 卫星掩码 - 2 卫星轨道改正数及
用户测距精度指数96 3 码间偏差改正数 86400 4 卫星钟差改正数 12 -
[1] 舒宝, 刘晖, 王利, 等. 区域参考站网支撑的PPP和RTK一体化服务及其性能[J]. 测绘学报, 2022, 51(9): 1870-1880. [2] SHIN M Y, HAN Y H, GO J, et al. Satellite anomaly detection technique for Network RTK integrity monitoring[C]//Proceedings of the ION 2015 Pacific PNT Meeting, 2015: 165-168. [3] 中国卫星导航系统管理办公室. 北斗卫星导航系统空间信号接口控制文件-精密单点定位服务信号PPP-B2b(1.0版)[DB/OL]. (2020-08-03)[2022-08-25]. http://www.beidou.gov.cn/yw/xwzx/202008/t20200803_20930.html [4] YANG Y X , DING Q , GAO W G, LI J L, et al. Principle and performance of BDSBAS and PPP-B2b of BDS-3[J]. Satellite navigation, 2022, 3(1): 1-9. DOI: 10.1186/s43020-022-00066-2 [5] ZHANG J, ZHAO L, YANG F X, et al. Integrity monitoring for undifferenced and uncombined PPP under local environmental conditions[J]. Measurement science and technology, 2022, 33(6): 065010. DOI: 10.1088/1361-6501/ac4b12 [6] ZHANG B C, CHEN Y C, YUAN Y B. PPP-RTK based on undifferenced and uncombined observations: theoretical and practical aspects[J]. Journal of geodesy, 2019, 93(8): 1011-1024. DOI: 10.1007/s00190-018-1220-5 [7] 周锋. 多系统GNSS非差非组合精密单点定位相关理论和方法研究[D]. 上海: 华东师范大学, 2018. [8] 杜文选, 严超, 徐炜, 王涛. 基于GPS/北斗网络RTK算法实现与结果分析[J]. 全球定位系统, 2017, 42(6): 42-47. [9] ZHANG B C, TEUNISSEN P J G, ODIJK D. A novel un-differenced PPP-RTK concept[J]. Journal of navigation, 2011(64): 180-191. DOI: 10.1017/s0373463311000361 [10] 姜蔚, 陈向东, 邢云剑, 等. 北斗三号PPP-B2b服务的卫星定轨精度评估[J]. 全球定位系统, 2023, 48(1): 32-36. [11] 中国卫星导航系统管理办公室. 北斗卫星导航系统空间信号接口控制文件公开服务信号B2b(1.0版)[DB/OL]. (2020-07)[2022-08-25]. http://www.beidou.gov.cn/xt/gfxz/202008/P020200803362056878157.pdf