留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GNSS-IR解译地表环境参数研究进展及展望

周昕 张双成 张勤 刘奇 马中民 刘宁

周昕, 张双成, 张勤, 刘奇, 马中民, 刘宁. GNSS-IR解译地表环境参数研究进展及展望[J]. 全球定位系统, 2023, 48(3): 12-23. doi: 10.12265/j.gnss.2023061
引用本文: 周昕, 张双成, 张勤, 刘奇, 马中民, 刘宁. GNSS-IR解译地表环境参数研究进展及展望[J]. 全球定位系统, 2023, 48(3): 12-23. doi: 10.12265/j.gnss.2023061
ZHOU Xin, ZHANG Shuangcheng, ZHANG Qin, LIU Qi, MA Zhongmin, LIU Ning. Research progress and prospects of GNSS-IR interpretation of surface environmental parameters[J]. GNSS World of China, 2023, 48(3): 12-23. doi: 10.12265/j.gnss.2023061
Citation: ZHOU Xin, ZHANG Shuangcheng, ZHANG Qin, LIU Qi, MA Zhongmin, LIU Ning. Research progress and prospects of GNSS-IR interpretation of surface environmental parameters[J]. GNSS World of China, 2023, 48(3): 12-23. doi: 10.12265/j.gnss.2023061

GNSS-IR解译地表环境参数研究进展及展望

doi: 10.12265/j.gnss.2023061
基金项目: 国家自然科学基金(42074041,42127802);国家重点研发计划(2019YFC1509802);地理信息工程国家重点实验室基金(SKLGIE2022-ZZ2-07)
详细信息
    作者简介:

    周昕:(1998—),男,博士研究生,主要研究方向为地基GNSS遥感与应用

    张双成:(1979—),男,博士生导师,副教授,主要研究方向为卫星导航与定位、GNSS遥感、地质灾害监测预警等研究

    张勤:(1958—),女,博士生导师,教授,主要研究方向为空间大地测量GPS与InSAR高精度数据处理与应用、GNSS遥感、地质灾害监测与防治等

    刘奇:(1994—),男,博士研究生,主要研究方向为GNSS遥感理论与应用

    通信作者:

    张双成 E-mail: shuangcheng369@chd.edu.cn

  • 中图分类号: P227

Research progress and prospects of GNSS-IR interpretation of surface environmental parameters

  • 摘要: 全球卫星导航系统(GNSS)具有全天候、近实时、高精度的特点,可持续发射L波段信号,广泛应用于定位、导航和授时(PNT). 随着GNSS研究与应用的不断深入,全球定位系统干涉反射(GNSS-IR)技术为地表参数探测提供了一种全新的手段. GNSS无线电导航信号经不同地表介质(如土壤、积雪、水面等)反射后,被反射的GNSS多路径信号承载反射面的特性信息,通过对GNSS反射信号中振幅、相位和频率等参数的分析,可有效获取地表反射面的物理参数. GNSS-IR作为当前GNSS和遥感领域的研究热点,取得了一些研究进展和成果. 本文详细介绍了GNSS-IR原理和方法及该技术在土壤湿度、植被、积雪和水位等方面的应用进展,并在此基础上,提出GNSS-IR研究中存在的问题及发展方向.

     

  • 图  1  测站多路径误差与高度角对比图

    图  2  PRN06卫星信号的SNR变化图

    图  3  GNSS-IR技术示意图

    图  4  PRN07卫星SNR及去趋势项后的SNR观测值

    图  5  GNSS解译土壤湿度与位移监测序列[30]

    图  6  形变速率与解译土壤湿度关系[30]

    图  7  相位与原位土壤湿度比较[45]

    图  8  负振幅和MODIS NDVI对比结果[45]

    图  9  软件主界面[62]

    图  10  SC02和GTGU站点估算的海面高度变化[73]

  • [1] 万玮, 李黄, 洪阳, 等. GNSS-R遥感观测模式及陆面应用[J]. 遥感学报, 2015, 19(6): 882-893.
    [2] 彭学峰, 万玮, 李飞, 等. GNSS-R土壤水分遥感的适宜性分析[J]. 遥感学报, 2017, 21(3): 341-350.
    [3] AXELRAD P, COMP C J, MACDORAN P F. SNR-based multipath error correction for GPS differential phase[J]. IEEE transactions on aerospace and electronic systems, 1996, 32(2): 650-660. DOI: 10.1109/7.489508
    [4] BILICH A, LARSON K M, AXELRAD P. Observations of signal-to-noise ratios (SNR) at geodetic GPS site CASA: implications for phase multipath[J]. Proceedings of the centre for European geodynamics and seismology, 2004, 23: 77-83.
    [5] LARSON KM, SMALL E E, GUTMANN E D, et al. Using GPS multipath to measure soil moisture fluctuations: initial results[J]. GPS solutions, 2008, 12(3): 173-177. DOI: 10.1007/s10291-007-0076-6
    [6] NIEVINSKI F G, LARSON K M. An open source GPS multipath simulator in Matlab/Octave[J]. GPS solutions, 2014, 18(3): 473-481. DOI: 10.1007/s10291-014-0370-z
    [7] ROESLER C, LARSON K M. Software tools for GNSS interferometric reflectometry (GNSS-IR)[J]. GPS solutions, 2018, 22(3): 1-10. DOI: 10.1007/s10291-018-0744-8
    [8] LARSON K M. Kristine’s GNSS-IR WebApp[J/OL].(2020-06-27)[2023-01-10]. https://www.kristinelarson.net/kristines-web-app/
    [9] 张勤. GPS原理及应用[M]. 北京: 科学出版社; 2005.
    [10] 张双成, 戴凯阳, 刘凯, 等. GPS-MR技术用于降雪厚度监测研究[J]. 地球物理学进展. 2016, 31(4): 1879-1884.
    [11] LARSON K M. Unanticipated uses of the global positioning system[J]. Annual review of earth and planetary sciences, 2019, 47(1): 19-40. DOI: 10.1146/annurev-earth-053018-060203
    [12] MARTIN-NEIRA M. A passive reflectometry and interferometry system (PARIS): application to ocean altimetry[J]. ESA journal, 1993, 17(4): 331-355.
    [13] KAVAK A, VOGEL W J, XU G H. Using GPS to measure ground complex permittivity[J]. Electronics letters, 1998, 34(3): 254. DOI: 10.1049/el:19980180
    [14] ENTEKHABI D, RODRIGUEZ-ITURBE I. Analytical framework for the characterization of the space-time variability of soil moisture[J]. Advances in water resources, 1994, 17(1-2): 35-45. DOI: 10.1016/0309-1708(94)90022-1
    [15] VITERBO P, BETTS A K. Impact of the ECMWF reanalysis soil water on forecasts of the July 1993 Mississippi flood[J]. Journal of geophysical research atmospheres, 1999, 104(D16): 19361-19366. DOI: 10.1029/1999JD900449
    [16] HIRSCHI M, SENEVIRATNE S I, ALEXANDROV V, et al. Observational evidence for soil-moisture impact on hot extremes in southeastern Europe[J]. Nature geoscience, 2011(4): 17-21. DOI: 10.1038/NGEO1032
    [17] ZENG J Y, CHEN K S, BI H Y, et al. A preliminary evaluation of the SMAP radiometer soil moisture product over united states and Europe using ground-based measurements[J]. IEEE transactions on geoscience and remote sensing, 2016, 54(8): 4929-4940. DOI: 10.1109/TGRS.2016.2553085
    [18] BROCCA L, MELONE F, MORAMARCO T, et al. Improving runoff prediction through the assimilation of the ASCAT soil moisture product[J]. Hydrology and earth system sciences, 2010, 14(10): 1881-1893. DOI: 10.5194/hess-14-1881-2010
    [19] SCHAUFLER G, KITZLER B, SCHINDLBACHER A, et al. Greenhouse gas emissions from European soils under different land use: effects of soil moisture and temperature[J]. European journal of soil science, 2010, 61(5): 683-696. DOI: 10.1111/j.1365-2389.2010.01277.x
    [20] LARSON K M, SMALL E E, GUTMANN E D, et al. Use of GPS receivers as a soil moisture network for water cycle studies[J]. Geophysical research letters, 2008, 35(24). DOI: 10.1029/2008GL036013
    [21] CHEW C C, SMALL E E, LARSON K M, et al. Effects of near-surface soil moisture on GPS SNR data: development of a retrieval algorithm for soil moisture[J]. IEEE transactions on geoscience and remote sensing, 2014, 52(1): 537-543. DOI: 10.1109/TGRS.2013.2242332
    [22] CHEW C, SMALL E E, LARSON K M, et al. An algorithm for soil moisture estimation using GPS-interferometric reflectometry for bare and vegetated soil[J]. GPS solutions, 2016, 20(3): 525-537. DOI: 10.1007/s10291-015-0462-4
    [23] SMALL E E, LARSON K M, CHEW C C, et al. Validation of GPS-IR soil moisture retrievals: comparison of different algorithms to remove vegetation effects[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2016, 9(10): 4759-4770. DOI: 10.1109/JSTARS.2015.2504527
    [24] VEY S, GUNTNER A, WICKERT J, et al. Long-term soil moisture dynamics derived from GNSS interferometric reflectometry: a case study for Sutherland, South Africa[J]. GPS solutions, 2016, 20(4): 641-654. DOI: 10.1007/s10291-015-0474-0
    [25] YANG T, WAN W, CHEN X, et al. Using BDS SNR observations to measure near-surface soil moisture fluctuations: results from low vegetated surface[J]. IEEE geoscience and remote sensing letters, 2017, 14(8): 1308-1312. DOI: 10.1109/LGRS.2017.2710083
    [26] SHI Y J, REN C, YAN Z H, et al. High spatial-temporal resolution estimation of Ground-Based global navigation satellite system interferometric reflectometry (GNSS-IR) soil moisture using the genetic algorithm back propagation (GA-BP) neural network[J]. ISPRS international journal of geo-information, 2021, 10(9): 623. DOI: 10.3390/ijgi10090623
    [27] LARSON K M, NIEVINSKI F G. GPS snow sensing: results from the earthscope plate boundary observatory[J]. GPS solutions, 2013, 17(1): 41-52. DOI: 10.1007/s10291-012-0259-7
    [28] RAN Q S, ZHANG B, YAO Y B, et al. Editing arcs to improve the capacity of GNSS-IR for soil moisture retrieval in undulating terrains[J]. GPS solutions, 2022, 26(1): 1-11. DOI: 10.1007/s10291-021-01206-y
    [29] NIE S S, WANG Y X, TU J S, et al. Retrieval of soil moisture content based on multisatellite dual-frequency combination multipath errors[J]. Remote sensing, 2022, 14(13): 3193. DOI: 10.3390/rs14133193
    [30] ZHOU X, ZHANG S C, ZHANG Q, et al. Research of deformation and soil moisture in loess landslide simultaneous retrieved with ground-based GNSS[J]. Remote sensing, 2022, 14(22): 5687. DOI: 10.3390/rs14225687
    [31] SMALL E E, LARSON K M, BRAUN J J. Sensing vegetation growth with reflected GPS signals[J]. Geophysical research letters, 2010, 37(12): 1-5. DOI: 10.1029/2010GL042951
    [32] FERRAZZOLI P, GUERRIERO L, PIERDICCA N, et al. Forest biomass monitoring with GNSS-R: theoretical simulations[J]. Advances in space research, 2011, 47(10): 1823-1832. DOI: 10.1016/j.asr.2010.04.025
    [33] RODRIGUEZ-ALVAREZ N, BOSCH-LLUIS X, CAMPS A, et al. Vegetation water content estimation using GNSS measurements[J]. IEEE geoscience and remote sensing letters, 2012, 9(2): 282-286. DOI: 10.1109/LGRS.2011.2166242
    [34] EGIDO A, CAPARRINI M, RUFFINI G, et al. Global navigation satellite systems reflectometry as a remote sensing tool for agriculture[J]. Remote sensing, 2012, 4(8): 2356-2372. DOI: 10.3390/rs4082356
    [35] LARSON K M, SMALL E E. Normalized microwave reflection index: a vegetation measurement derived from GPS data[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2014, 7(5): 1501-1511. DOI: 10.1109/JSTARS.2014.2300116
    [36] SMALL E E, LARSON K M, SMITH W K. Normalized microwave reflection index: validation of vegetation water content estimates at montana grasslands[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2014, 7(5): 1512-1521. DOI: 10.1109/JSTARS.2014.2320597
    [37] EVANS S G, SMALL E E, LARSON K M. Comparison of vegetation phenology in the western united states from reflected GPS microwave signals and NDVI[J]. International journal of remote sensing, 2014, 35(9): 2996-3017. DOI: 10.1080/01431161.2014.894660
    [38] JONES M O, KIMBALL J S, SMALL E E, et al. Comparing land surface phenology derived from satellite and GPS network microwave remote sensing[J]. International journal of biometeorology, 2014, 58(6): 1305-1315. DOI: 10.1007/s00484-013-0726-z
    [39] CHEW C C, SMALL E E, LARSON K M, et al. Vegetation sensing using GPS-interferometric reflectometry: theoretical effects of canopy parameters on signal-to-noise ratio data[J]. IEEE transactions on geoscience and remote sensing, 2015, 53(5): 2755-2764. DOI: 10.1109/TGRS.2014.2364513
    [40] WAN W, LARSON K M, SMALL E E, et al. Using geodetic GPS receivers to measure vegetation water content[J]. GPS solutions, 2015, 19(2): 237-248. DOI: 10.1007/s10291-014-0383-7
    [41] WU X R, JIN S G, XIA J M. A Forward GPS multipath simulator based on the vegetation radiative transfer equation model[J]. Sensors, 2017, 17(6): 1291. DOI: 10.3390/s17061291
    [42] 吴继忠, 吴玮. 基于GPS-IR的美国中西部地区NDVI时间序列反演[J]. 农业工程学报, 2016, 32(24): 183-188. DOI: 10.11975/j.issn.1002-6819.2016.24.024
    [43] 祁云, 郑南山, 严薛峰, 等. 利用GPS的信噪比观测值监测植被生物量[J]. 科技技术与工程, 2018, 18(1): 177-181.
    [44] YANG T, WAN W, CHEN X W, et al. Land surface characterization using BeiDou signal to-noise ratio observations[J]. GPS solutions, 2019, 32(2): 1-12. DOI: 10.1007/s10291-019-0824-4
    [45] ZHANG S C, WANG T, WANG L X, et al. Evaluation of GNSS-IR for retrieving soil moisture and vegetation growth characteristics in wheat farmland[J]. Journal of surveying engineering, 2021, 147(3): 04021009. DOI: 10.1061/(ASCE)SU.1943-5428.0000355
    [46] ZHAN J Y, ZHANG R, XIE L, et al. Vegetation growth monitoring based on BDS interferometry reflectometry with triple-frequency SNR data[J]. IEEE geoscience and remote sensing letters, 2022(19): 1-5. DOI: 10.1109/LGRS.2022.3204579
    [47] Armstrong R L, BRODZIK M J. Recent northern hemisphere snow extent: a comparison of data derived from visible and microwave satellite sensors[J]. Geophysical research letters, 2001, 28(19): 3673-3676. DOI: 10.1029/2000GL012556
    [48] FREI A, ROBINSON D A. Northern hemisphere snow extent: regional variability 1972–1994[J]. International journal of climatology:a journal of the royal meteorological society, 1999, 19(14): 1535-1560. DOI: 10.1002/(SICI)1097-0088(19991130)19:14<1535::AID-JOC438>3.0.CO;2-J
    [49] ROBINSON D A, KENNETH F D, RICHARD R H J. Global snow cover monitoring: an update[J]. Bulletin of the American meteorological society, 1993, 74(9): 1689-1696. DOI: 10.1175/1520-0477(1993)074<1689:GSCMAU>2.0.CO;2
    [50] HENDERSON G R, PEINGS Y, FURTADO J C, et al. Snow–atmosphere coupling in the northern hemisphere[J]. Nature climate change, 2018, 8(D3): 954-963. DOI: 10.1038/s41558-018-0295-6
    [51] LARSON K M, GUTMANN E, ZAVOROTNY V U, et al. Can we measure snow depth with GPS receivers[J]. Geophysical research letters, 2009, 36(17): L17502. DOI: 10.1029/2009GL039430
    [52] OZEIK M, HEKI K. GPS snow depth meter with geometry-free linear combinations of carrier phases[J]. Journal of geodesy, 2012, 86(3): 209-219. DOI: 10.1007/s00190-011-0511-x
    [53] YU K G, BAN W, ZHANG X H, et al. Snow depth estimation based on multipath phase combination of GPS triple-frequency signals[J]. IEEE transactions on geoscience and remote sensing, 2015, 53(9): 5100-5109. DOI: 10.1109/TGRS.2015.2417214
    [54] ZHANG Z Y, GUO F, ZHANG X H. Triple-frequency multi-GNSS reflectometry snow depth retrieval by using clustering and normalization algorithm to compensate terrain variation[J]. GPS solutions, 2020, 24(2): 1-18. DOI: 10.1007/s10291-020-0966-4
    [55] TABIBI S, GEREMIA-NIEVINSKI F, VAN D T. Statistical comparison and combination of GPS, GLONASS, and multi-GNSS multipath reflectometry applied to snow depth retrieval[J]. IEEE transactions on geoscience and remote sensing, 2017, 55(7): 3773-3785. DOI: 10.1109/TGRS.2017.2679899
    [56] ZHANG S C, WANG X L, ZHANG Q. Avoiding errors attributable to topography in GPS-IR snow depth retrievals[J]. Advances in space research, 2017, 59(6): 1663-1669. DOI: 10.1016/j.asr.2016.12.031
    [57] HU Y, YUAN X T, LIU W, et al. GNSS-R snow depth inversion based on variational mode decomposition with multi-GNSS constellations[J]. IEEE transactions on geoscience and remote sensing, 2022(60): 1-12. DOI: 10.1109/TGRS.2022.3182987
    [58] HU Y, YUAN X T, LIU W, et al. An SVM-based snow detection algorithm for GNSS-R snow depth retrievals[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2022(15): 6046-6052. DOI: 10.1109/JSTARS.2022.3193113
    [59] WANG X L, ZHANG S C, WANG L F, et al. Analysis and combination of multi-GNSS snow depth retrievals in multipath reflectometry[J]. GPS solutions, 2020, 24(3): 1-13. DOI: 10.1007/s10291-020-00990-3
    [60] LI Z, CHEN P, ZHENG N Q, et al. Accuracy analysis of GNSS-IR snow depth inversion algorithms[J]. Advances in space research, 2021, 67(4): 1317-1332. DOI: 10.1016/j.asr.2020.11.02
    [61] WAN W, ZHANG J, DAI L Y, et al. A new snow depth data set over northern China derived using GNSS interferometric reflectometry from a continuously operating network (GSnow-CHINA v1.0, 2013–2022)[J]. Earth system science data, 2022, 14(8): 3549-3571. DOI: 10.5194/essd-14-3549-2022
    [62] ZHANG S, PENG J, ZHANG C L, et al. GiRsnow: an open-source software for snow depth retrievals using GNSS interferometric reflectometry[J]. GPS solutions, 2021, 25(2): 1-8. DOI: 10.1007/s10291-021-01096-0
    [63] ANDERSON K D. Determination of water level and tides using interferometric observations of GPS signals[J]. Journal of atmospheric and oceanic technology, 2000, 17(8): 1118-1127. DOI: 10.1175/1520-0426(2000)017<1118:DOWLAT>2.0.CO;2
    [64] LARSON K M, LOFGREN J S, HASS R. Coastal sea level measurements using a single geodetic GPS receiver[J]. Advances in space research, 2013, 51(8): 1301-1310. DOI: 10.1016/j.asr.2012.04.017
    [65] LARSON K M, RAY R D, NIEVINSKI F G, et al. The accidental tide gauge: a GPS reflection case study from Kachemak Bay, Alaska[J]. IEEE geoscience and remote sensing letters, 2013, 10(5): 1200-1204. DOI: 10.1109/LGRS.2012.2236075
    [66] LOFGREN J S, HAAS R, SCHERNECK H-G. Sea level time series and ocean tide analysis from multipath signals at five GPS sites in different parts of the world[J]. Journal of geodynamics, 2014(80): 66-80. DOI: 10.1016/j.jog.2014.02.012
    [67] LARSON K M, RAY R D, WILLIAMS S D P. A ten-year comparison of water levels measured with a geodetic GPS receiver versus a conventional tide gauge[J]. Journal of atmospheric and oceanic technology, 2017, 34(2): 295-307. DOI: 10.1175/JTECH-D-16-0101.1
    [68] ROUSSEL N, RAMILLIEN G, FRAPPART F, et al. Sea level monitoring and sea state estimate using a single geodetic receiver[J]. Remote sensing of environment, 2015, 171(15): 261-277. DOI: 10.1016/j.rse.2015.10.011
    [69] STRANDBERG J, HOBIGER T, HASS R. Improving GNSS-R sea level determination through inverse modeling of SNR data[J]. Radio science, 2016, 51(8): 1286-1296. DOI: 10.1002/2016RS006057
    [70] STRANDBERG J, HOBIGER T, HASS R. Real-time sea-level monitoring using Kalman filtering of GNSS-R data[J]. GPS solutions, 2019, 23(3): 61. DOI: 10.1007/s10291-019-0851-1
    [71] REINKING J. GNSS-SNR water level estimation using global optimization based on interval analysis[J]. Journal of geodetic science, 2016, 6(1). DOI: 10.1515/jogs-2016-0006
    [72] PURNELL D, GOMEZ N, CHAN N H, et al. Quantifying the uncertainty in ground-based GNSS-reflectometry sea level measurements[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2020(13): 4419-4428. DOI: 10.1109/JSTARS.2020.3010413
    [73] LIU Q, ZHANG S C. An improved sea level retrieval method using the differential evolution of GNSS SNR data[J]. Advances in space research, 2021, 67(3): 975-984. DOI: 10.1016/j.asr.2020.10.050
    [74] ROUSSELl N, FRAPPART F, RAMILLIEN G, et al. Simulations of direct and reflected wave trajectories for ground-based GNSS-R experiments[J]. Geoscientific model development, 2014, 7(5): 2261-2279. DOI: 10.5194/gmd-7-2261-2014
    [75] SANTAMARIA-GOMEZ A, WATSON C. Remote leveling of tide gauges using GNSS reflectometry: case study at spring bay, Australia[J]. GPS solutions, 2017, 21(2): 451-459. DOI: 10.1007/s10291-016-0537-x
    [76] WILLIAMS S D P, NIEVINSKI F G. Tropospheric delays in ground‐based GNSS multipath reflectometry—experimental evidence from coastal sites[J]. Journal of geophysical research:solid earth, 2017, 122(3): 2310-2327. DOI: 10.1002/2016JB013612
    [77] JIN S G, QIAN X D, WU X. Sea level change from BeiDou Navigation Satellite System-Reflectometry (BDS-R): first results and evaluation[J]. Global and planetary change, 2017(149): 20-25. DOI: 10.1016/j.gloplacha.2016.12.010
    [78] LIU Z, DU L, ZHOU P Y, et al. BDS/GNSS multipath reflectometry (BDS/GNSS-MR) based altimetry with new signals: initial assessment and comparison[J]. Advances in space research, 2022, 69(1): 282-291. DOI: 10.1016/j.asr.2021.08.025
    [79] WANG X L, HE X F, ZHANG Q. Evaluation and combination of quad-constellation multi-GNSS multipath reflectometry applied to sea level retrieval[J]. Remote sensing of environment, 2019, 231(2): 111229. DOI: 10.1016/j.rse.2019.111229
    [80] WANG X L, HE X F, XIAO R Y, et al. Millimeter to centimeter scale precision water-level monitoring using GNSS reflectometry: application to the south-to-north water diversion project, China[J]. Remote sensing of environment, 2021, 265(8): 112645. DOI: 10.1016/j.rse.2021.112645
    [81] WANG X L, HE X F, ZHANG Q. Coherent superposition of multi-GNSS wavelet analysis periodogram for sea-level retrieval in GNSS multipath reflectometry[J]. Advances in space research, 2020, 65(7): 1781-1788. DOI: 10.1016/j.asr.2019.12.023
    [82] 张双成, 武慧琳, 张化疑, 等. 中国沿海 GPS 站用于潮波系数提取分析[J]. 海洋测绘, 2019, 39(3): 1-5. DOI: 10.3969/j.issn.1671-3044.2019.03.001
    [83] TABIBI S, GEREMIA-NIEVINSKI F, FRANCIS O, et al. Tidal analysis of GNSS reflectometry applied for coastal sea level sensing in Antarctica and Greenland[J]. Remote sensing of environment, 2020(248): 111959. DOI: 10.1016/j.rse.2020.111959
    [84] 武慧琳. 岸基 GNSS 解译潮位及潮波系数提取研究[D]. 西安: 长安大学, 2020.
    [85] PENG D J, HILL E M, LI L L, et al. Application of GNSS interferometric reflectometry for detecting storm surges[J]. GPS solutions, 2019, 23(2): 47. DOI: 10.1007/s10291-019-0838-y
    [86] 何秀凤, 王杰, 王笑蕾, 等. 利用多模多频 GNSS-IR 信号反演沿海台风风暴潮[J]. 测绘学报, 2020, 49(9): 1168-1178.
    [87] HOLDEN L D, LARSON K M. Ten years of lake taupō surface height estimates using the GNSS interferometric reflectometry[J]. Journal of geodesy, 2021, 95(7): 74. DOI: 10.1007/s00190-021-01523-7
    [88] LESTARQUIT L, PEYREZABES M, DARROZES J, et al. Reflectometry with an open-source software GNSS receiver: use case with carrier phase altimetry[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2016, 9(10): 4843-4853. DOI: 10.1109/JSTARS.2016.2568742
    [89] LI W Q, CARDELLACH E, FABRA F, et al. Lake level and surface topography measured with spaceborne GNSS‐reflectometry from CYGNSS mission: example for the lake Qinghai[J]. Geophysical research letters, 2018, 45(24): 13332-13341. DOI: 10.1029/2018GL080976
    [90] XU L W, WAN W, CHEN X W, et al. Spaceborne GNSS-R observation of global lake level: first results from the TechDemoSat-1 mission[J]. Remote sensing, 2019, 11(12): 1438. DOI: 10.3390/rs11121438
    [91] ZEIGER P, FRAPPART F, DARROZES J, et al. SNR-based water height retrieval in rivers: application to high amplitude asymmetric tides in the garonne river[J]. Remote sensing, 2021, 13(9): 1856. DOI: 10.3390/rs13091856
    [92] VU P L, FRAPPART F, DARROZES J, et al. Comparison of water level changes in the mekong river using GNSS reflectometry, satellite altimetry and in-situ tide/river Gauges[C]//IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, 2018.
    [93] HA M C. Evolution of soil moisture and analysis of fluvial altimetry using GNSS-R[D]. Université Paul Sabatier-Toulouse III, 2018.
    [94] SONG M, HE X F, WANG X L, et al. Study on the quality control for periodogram in the determination of water level using the GNSS-IR technique[J]. Sensors, 2019, 19(20): 4524. DOI: 10.3390/s19204524
  • 加载中
图(10)
计量
  • 文章访问数:  740
  • HTML全文浏览量:  173
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-26

目录

    /

    返回文章
    返回