On the principle and applications of the joint adjustment method for GNSS/A positioning of the underwater geodetic control point(Invited)
-
摘要: 为分析海面换能器位置误差对海底大地控制点定位精度的影响规律,我们提出了GNSS声学(GNSS/Acoustic,GNSS/A )定位联合平差(joint adjustment, JA)方法. 针对联合平差方法理论证明不足及无深海数据验证的问题,本文进一步阐述了联合平差方法的原理,给出了联合平差方法严密的优越性证明和精度评定公式. 最后采用松花湖数据和南海数据进行验证,联合平差方法可以提高传统GNSS/A方法2%~26%的定位精度,展示联合平差方法在湖区和深海区的应用效果.Abstract: On the impact of the coordinate errors of the acoustic transducer on the positioning accuracy of the undersea geodetic control point, we proposed a joint adjustment method of the seafloor geodetic control point for GNSS/A underwater precise positioning, whose crux was treating the positions of both transducer and transponder as unknown parameters in the acoustic ranging equation. The paper further expounds the principle of the joint adjustment method, for the shortcomings in the proof of the superiority of the joint adjustment method and the lack of verification of deep-sea data, the strict superiority proof and the precision evaluation formula of the joint adjustment method are given in this paper. Using Songhua Lake data and South China Sea data for verification, the precision of seafloor geodetic control point positioning with the proposed method is improved by 2% to 26%. The application effect of the joint adjustment method in the lake area and the deep-sea area is shown.
-
表 1 海底应答器定位结果与精度统计
m PRN 方法 海底应答器定位结果 偏差_U RMS E N U E N U C02 LS 315690.3981 4841955.1130 −60.7708 0.0291 0.0164 0.0166 0.0061 JA 315690.3985 4841955.1128 −60.7718 0.0284 0.0157 0.0160 0.0058 C04 LS 315697.7689 4841835.0949 −59.8797 0.2642 0.0148 0.0150 0.0073 JA 315697.7938 4841835.0788 −59.9355 0.2105 0.0096 0.0098 0.0051 C08 LS 315736.3626 4841896.6657 −60.2694 0.1051 0.0158 0.0145 0.0057 JA 315736.4328 4841896.6636 −60.2922 0.0823 0.0096 0.0096 0.0038 表 2 海底应答器定位结果及其精度统计表
m 方法 E N U RMS E N U LS 2438927.5608 491999.1574 −1960.1448 0.1218 0.1235 0.0538 JA 2438927.5216 491999.1857 −1960.2278 0.0899 0.0912 0.0397 -
[1] 杨元喜, 徐天河, 薛树强. 我国海洋大地测量基准与海洋导航技术研究进展与展望[J]. 测绘学报, 2017, 46(1): 1-8. DOI: 10.11947/j.AGCS.2017.20160519 [2] 杨元喜, 刘焱雄, 孙大军, 等. 海底大地基准网建设及其关键技术[J]. 中国科学:地球科学, 2020, 50(7): 936-945. [3] 刘经南, 陈冠旭, 赵建虎, 等. 海洋时空基准网的进展与趋势[J]. 武汉大学学报(信息科学版), 2019, 44(1): 17-37. [4] CHEN G X, LIU Y, LIU Y X, et al. Improving GNSS-acoustic positioning by optimizing the ship’s track lines and observation combinations[J]. Journal of geodesy, 2020, 94(6): 83-96. DOI: 10.1007/s00190-020-01389-1 [5] SATO M, FUJITA M, MATSUMOTO Y, et al. Improvement of GPS/acoustic seafloor positioning precision through controlling the ship’s track line[J]. Journal of geodesy, 2013, 87(9): 105-114. DOI: 10.1007/s00190-013-0649-9 [6] 赵爽, 王振杰, 吴绍玉, 等. 基于选权迭代的走航式水声差分定位方法[J]. 石油地球物理勘探, 2017, 52(6): 1137-1145. [7] XU P L, ANDO M, TADOKORO K. Precise, three-dimensional seafloor geodetic deformation measurements using difference techniques[J]. Earth planets and space, 2005, 57(9): 795-808. DOI: 10.1186/bf03351859 [8] 王振杰, 刘慧敏, 杨慧良, 等. 基于垂直约束的深海拖曳系统USBL/DVL组合导航算法[J]. 中国惯性技术学报, 2019, 27(5): 670-676. [9] 赵建虎, 邹亚靖, 吴永亭, 等. 深度约束的海底控制网点坐标确定方法[J]. 哈尔滨工业大学学报, 2016, 48(10): 137-141. DOI: 10.11918/j.issn.0367-6234.2016.10.020 [10] 赵建虎, 陈鑫华, 吴永亭, 等. 顾及波浪影响和深度约束的水下控制网点绝对坐标的精确确定[J]. 测绘学报, 2018, 47(3): 413-421. DOI: 10.11947/j.AGCS.2018.20170246 [11] 刘慧敏, 王振杰, 赵爽. 深度约束的浅海多目标声学定位方法[J]. 石油地球物理勘探, 2019, 54(6): 1181-1187. [12] 王毅. 石油勘探中水下高精度定位算法研究[D]. 青岛: 中国石油大学(华东), 2014. [13] ZHAO S, WANG Z J, NIE Z X, et al. Investigation on total adjustment of the transducer and seafloor transponder for GNSS/Acoustic precise underwater point positioning[J]. Ocean engineering, 2021, 221(1): 108533. DOI: 10.1016/j.oceaneng.2020.108533 [14] NIE Z X, WANG B Y, WANG Z J, et al. An offshore real-time precise point positioning technique based on a single set of BeiDou short-message communication devices[J]. Journal of geodesy, 2020, 94(9): 78. DOI: 10.1007/s00190-020-01411-6 [15] 周江文. 误差理论[M]. 北京: 测绘出版社, 1979. [16] 黄维彬. 近代平差理论及其应用[M]. 北京: 解放军出版社, 1992.