Research on UAVs cloud-end collaborative navigation control algorithm
-
摘要: 针对无人机集群导航规划算法和策略问题开展研究,在分析传统航迹规划方法和经典粒子群算法基础上,提出了一种无人机集群云端协同导航控制算法. 对机上部分的粒子群智能导航算法进行优化,设计后台部分的混合群智能导航规划算法并进行优化改进. 仿真和实际测试验证表明:该方法正确可行,可提高无人机集群导航规划解的优质性. 对比其他导航规划方法,该方法在无人机集群导航方面具有明显优越性.Abstract: Conduct research on unmanned aerial vehicles (UAVs) navigation planning algorithms and strategies, based on the analysis of traditional path planning methods and classical particle swarm optimization (PSO), a UAVs cloud collaborative navigation control algorithm is proposed. The PSO in the UAV onboard part is improved, and the hybrid swarm intelligent algorithm in the cloud background part is designed and optimized. Simulation and actual test results show that the method is correct and feasible, and can improve the quality of UAVs navigation planning solution. Compared with other navigation planning methods, this method has obvious advantages in UAVs navigation.
-
表 1 实际飞行测试算法运行时间
s 试验次数 机载算法平均运行时间 云后台算法平均运行时间 1 0.022 0.047 2 0.028 0.039 3 0.017 0.041 -
[1] 刘逸. 粒子群优化算法的改进及应用研究[D]. 西安: 西安电子科技大学, 2012: 6-9. [2] 方群, 徐青. 基于改进粒子群算法的无人机三维航迹规划[J]. 西北工业大学学报, 2017, 35(1): 66-73. [3] 秦赟. 基于改进粒子群算法的无人机航迹规划[D]. 成都: 电子科技大学, 2011: 37-38. [4] 刘畅, 谢文俊, 张鹏, 等. 多基地多无人机航迹避障任务规划[J]. 计算机工程, 2019(11): 275-280. [5] 欧阳志宏, 李修和. 基于任务区分的无人机航路规划方法[J]. 弹箭与制导学报, 2017, 37(3): 114-118. DOI: 10.15892/j.cnki.djzdxb.2017.03.029 [6] CHEN Y B, LUO G C, MEI Y S, et al. UAV path planning using artificial potential field method updated by optimal control theory[J]. International journal of systems science, 2016, 47(6): 1407-1420. DOI: 10.1080/00207721.2014.929191 [7] LIN Y C, SARIPALLI S. Sampling-based path planning for UAV collision avoidance[J]. IEEE transactions on intelligent transportation systems, 2017, 18(11): 3179-3192. DOI: 10.1109/TITS.2017.2673778 [8] 熊超, 解武杰, 董文瀚. 基于碰撞锥改进人工势场的无人机避障航路规划[J]. 计算机工程, 2018, 44(9): 314-320. [9] 朱杰, 鲁艺, 张辉明. 突发威胁情况下的无人机航迹重规划[J]. 计算机工程与应用, 2018, 54(8): 255-259. [10] GIACOMIN P A S, HEMERLY E M. Reconfiguration between longitudinal and circular formations for multi-UAV systems by using segments[J]. Journal of intelligent & robotic systems, 2014, 78(2): 339-355. DOI: 10.1007/s10846-014-0063-4 [11] WEN N F, SU X H, MA P J, et al. Online UAV path planning in uncertain and hostile environments[J]. International journal of machine learning and cybernetics, 2017, 8(2): 469-487. DOI: 10.1007/s13042-015-0339-4