Performance analysis of undifferenced PPP ambiguity resolution with LEO enhanced GPS, Galileo, BDS-3
-
摘要: 本文主要研究了GPS、Galileo、北斗三号(BeiDou-3 Global Satellite Navigation System ,BDS-3)的未校准相位延迟(uncalibrated phase delays,UPD)稳定性以及低地球轨道(low earth orbit,LEO)增强的非差精密单点定位(precise point positioning,PPP)模糊度固定. 基于全球分布的126个测站2022年001—007共一周的观测数据进行GPS、Galileo、BDS-3的UPD估计分析. 宽巷 UPD每天作为一组常数估计,窄巷UPD每15 min作为一组常数估计. 结果表明:宽巷UPD在一周之内具有较好的稳定性,平均标准差小于0.05周;窄巷UPD在一天之内具有较好的稳定性,平均标准差小于0.06周. 使用估计的UPD产品进行PPP模糊度固定并对其性能进行分析,GPS、Galileo、BDS-3各系统静态PPP的平均收敛时间分别由20.75 min、23.78 min、30.60 min缩短至10.69 min、18.27 min、24.80 min;平均模糊度固定率分别为90.41%、77.22%、67.21%;东(east,E)、北(north,N)、天顶(up,U)三个方向均方根误差(root mean square error,RMSE)的平均值分别由(1.59 cm、0.91 cm、3.30 cm)、(1.58 cm、0.93 cm、3.24 cm)、(1.61 cm、0.98 cm、3.39 cm)减小至(0.90 cm、0.89 cm、2.98 cm)、(1.33 cm、0.85 cm、2.90 cm)、(1.47 cm、1.18 cm、2.94 cm). 利用仿真的LEO星座观测数据,研究不同LEO卫星数量的增强效果,当LEO可视卫星数量愈多时,增强效果愈加显著,当LEO可视卫星数量为10颗时,GPS、Galileo、BDS-3各系统的静态PPP固定解的平均收敛时间分别由10.69 min、18.27 min、24.80 min 缩短至1.53 min、1.71 min、1.94 min;模糊度固定率分别由90.41%、77.22%、67.51%提高至93.43%、79.99%、72.00%.
-
关键词:
- 未校准相位延迟(UPD) /
- 精密单点定位(PPP) /
- 模糊度固定 /
- 收敛时间 /
- 低地球轨道(LEO)
Abstract: This paper focused on the stability of uncalibrated phase delays (UPD) of GPS, Galileo, BDS-3, and the low earth orbit (LEO) augmented undifferenced precise point positioning (PPP) ambiguity resolution. Based on the observation data of 126 global distributed MGEX stations of 7 days from 001 to 007 in 2022 were employed for UPDs estimation of GPS, Galileo, BDS-3. Wide-lane UPDs were estimated as a set of constants every day and narrow-lane UPDs were estimated as a set of constants every 15 minutes. The results showed that the wide-lane UPSs had good stability within one week, and the average standard deviation was less than 0.05 cycles. The narrow-lane UPDs had good stability within 1 day, and the average standard deviation was less than 0.06 cycles. Using the estimated UPDs products for PPP AR and analyzing their performance, the average convergence time of GPS, Galileo and BDS-3 was shortened from 20.75 min, 23.78 min, 30.60 min to 10.69 min, 18.27 min, 24.80 min, respectively, and the average ambiguity fix rates were 90.41%, 77.22% and 67.21%, respectively. The average value of root-mean square error (RMSE) in the east, north and up components decreased from (1.59 cm, 0.91 cm, 3.30 cm), (1.58 cm, 0.93 cm, 3.24 cm), (1.61 cm, 0.98 cm, 3.39 cm) to (0.90 cm, 0.89 cm, 2.98 cm), (1.33 cm, 0.85 cm, 2.90 cm) and (1.47 cm, 1.18 cm, 2.94 cm), respectively. Using the simulated LEO constellation observation data, the enhancement effect of different number of LEO satellites was studied, and the enhancement effect became more significant when the number of LEO visible satellites is more. When the number of LEO visible satellites was 10, the average convergence time of GPS, Galileo and BDS-3 were improved from 10.69 min, 18.27 min, 24.80 min to 1.53 min, 1.71 min, 1.94 min, and average ambiguity fixing rates were improved from 90.41%, 77.22%, 67.51% to 93.43%, 79.99%, 72.00%, respectively. -
表 1 GPS、Galileo、BDS-3静态PPP浮点解与固定解收敛时间、RMSE及固定解模糊度固定率统计
定位系统 浮点解收敛时间/min 固定解收敛时间/min 浮点解RMSE/cm 固定解RMSE/cm 固定率/% E方向 N方向 U方向 E方向 N方向 U方向 GPS 20.75 10.69 1.59 0.91 3.30 0.90 0.89 2.98 90.41 Galileo 23.78 18.27 1.58 0.93 3.24 1.33 0.85 2.90 77.22 BDS-3 30.60 24.80 1.61 0.98 3.39 1.47 1.18 2.94 67.51 表 2 不同LEO可视卫星数量增强GPS、Galileo、BDS-3前后静态PPP固定解平均收敛时间和模糊度固定率统计
定位系统 LEO可视卫星数:0 LEO可视卫星数:4 LEO可视卫星数:7 LEO可视卫星数:10 收敛时间/min 固定率/% 收敛时间/min 固定率/% 收敛时间/min 固定率/% 收敛时间/min 固定率/% GPS 10.69 90.41 6.72 91.76 4.00 93.01 1.53 93.43 Galileo 18.27 77.22 8.22 78.50 3.89 79.84 1.71 79.99 BDS-3 24.80 67.51 5.14 68.24 3.56 71.32 1.94 72.00 表 3 不同LEO可视卫星数量增强GPS、Galileo、BDS-3前后静态PPP固定解平均RMSE统计
定位系统 LEO可视卫星数:0 LEO可视卫星数:4 LEO可视卫星数:7 LEO可视卫星数:10 RMSE/cm RMSE/cm RMSE/cm RMSE/cm E N U E N U E N U E N U GPS 0.90 0.89 2.98 0.66 0.62 2.37 0.54 0.53 2.15 0.49 0.47 1.55 Galileo 1.33 0.85 2.90 1.14 0.75 2.52 1.09 0.68 2.01 0.90 0.64 1.93 BDS-3 1.47 1.18 2.94 1.32 1.13 2.46 0.98 1.02 2.21 0.89 0.91 1.59 -
[1] KOUBA J, HÉROUX P. Precise point positioning using IGS orbit and clock products[J]. GPS solutions, 2001, 5(2): 12-28. DOI: 10.1007/PL00012883 [2] HU J H, ZHANG X H, LI P, et al. Multi-GNSS fractional cycle bias products generation for GNSS ambiguity-fixed PPP at Wuhan University[J]. GPS solutions, 2020, 24(1): 15. DOI: 10.1007/s10291-019-0929-9 [3] GABOR M J, NEREM R S. GPS carrier phase ambiguity resolution using satellite-satellite single differences[C]//Proceedings of ION GNSS 12th International Technical Meeting of the Satellite Division, 1999: 1569-1578. [4] GE M R, GENDT G, ROTHACHER M, et al. Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations[J]. Journal of geodesy, 2008, 82(7): 389-399. DOI: 10.1007/s00190-007-0187-4 [5] COLLINS P, LAHAYE F, HÉROUX P, et al. Precise point positioning with ambiguity resolution using the decoupled clock model[C]//Proceedings of International Technical Meeting of the Satellite Division of the Institute of Navigation, 2008: 16-19. [6] GENG J H, TEFERLE F N, SHI C, et al. Ambiguity resolution in precise point positioning with hourly data[J]. GPS solutions, 2009(13): 263-270. DOI: 10.1007/s10291-009-0119-2 [7] LAURICHESSE D, MERCIER F, BERTHIAS J P, et al. Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination[J]. Navigation, 2009, 56(2): 135-149. DOI: 10.1002/navi.2009.56.issue-2 [8] 张小红, 李盼, 朱锋. 卫星端宽巷载波相位小数偏差估计方法研究与结果分析[J]. 武汉大学学报(信息科学版), 2012, 37(10): 1177-1180. [9] 李林阳, 崔阳, 王宇谱, 等. 窄巷FCB估计方法改进及时变特性分析[J]. 测绘学报, 2017, 46(01): 34-43. DOI: 10.11947/j.AGCS.2017.20160222 [10] 宋保丰, 郝金明, 师一帅, 等. 非差FCB估计及其在PPP模糊度固定中的应用[J]. 全球定位系统, 2019, 44(3): 32-37. [11] ZHAO B, XIONG Y L, XU S G, et al. Using only observation station data for PPP ambiguity resolution by UPD estimation [J]. Advances in space research, 2021, 67(6): 1805-1815. DOI: 10.1016/j.asr.2020.12.033 [12] LI B F, GE H B, GE M R, et al. LEO enhanced Global Navigation Satellite System (LeGNSS) for real-time precise positioning services[J]. Advances in space research, 2019, 63(1): 73-93. DOI: 10.1016/j.asr.2018.08.017 [13] ZHAO Q, PAN S G, GAO C F, et al. BDS/GPS/LEO triple-frequency uncombined precise point positioning and its performance in harsh environments[J]. Measurement, 2020(151): 107216. DOI: 10.1016/j.measurement.2019.107216 [14] KE M X, LV J, CHANG J, et al. Integrating GPS and LEO to accelerate convergence time of precise point positioning[C]//International Conference on Wireless Communications & Signal Processing (WCSP), IEEE, 2015: 1-5. DOI: 10.1109/WCSP.2015.7341230 [15] GE H B, LI B F, GE M R, et al. Initial Assessment of precise point positioning with LEO Enhanced Global Navigation Satellite Systems (LeGNSS)[J]. Remote sensing, 2018, 10(7): 984. DOI: 10.3390/rs10070984 [16] LI X X, MA F J, LI X, et al. LEO Constellation-augmented multi-GNSS for rapid PPP convergence[J]. Journal of geodesy, 2019, 93(5): 749-764. DOI: 10.1007/s00190-018-1195-2 [17] GE H B, LI B F, NIE L W, et al. LEO constellation optimization for LEO Enhanced Global Navigation Satellite System (LeGNSS)[J]. Advances in space research, 2020, 66(3): 520-532. DOI: 10.1016/j.asr.2020.04.031 [18] LIU J, HAO J, YANG Y, et al. Design optimization of low earth orbit constellation based on BeiDou Satellite Navigation System precise point positioning[J]. IET radar, sonar & navigation, 2022, 16(8): 1241-1252. DOI: 10.1049/rsn2.12257 [19] HONG J, TU R, ZHANG P F, et al. GNSS rapid precise point positioning enhanced by low Earth orbit satellites[J]. Satellite navigation, 2023, 4(1): 1-13. DOI: 10.1186/s43020-023-00100-x [20] 张小红, 李盼, 李星星, 等. 宽巷载波相位模糊度小数偏差时变特性分析[J]. 测绘学报, 2013, 42(6): 798-803.