Research on ultra wideband signal’s high sensitivity receive technology
-
摘要: 美国联邦通讯委员会(Federal Communications Commission,FCC)规定的超宽带(ultra wide band,UWB)信号功率谱密度不大于–41.3 dBm/MHz,这就限制了UWB信号的发射功率. 为了提升有限功率条件下UWB信号接收机的接收灵敏度,延长UWB信号测距距离,设计了一种长相干积分算法来提升接收信号处理增益,并对IEEE 802.15.4 协议中划分的两种UWB信号体制,即高频脉冲(high frequency pulse,HRP) UWB和低频脉冲(low frequency pulse,LRP) UWB分别进行了长相干积分仿真. 仿真结果表明:长相干积分对HRP UWB信号的积分增益更加明显,而对LRP UWB信号的增益效果有限,基于仿真结果对通导一体化UWB信号体制设计提供了参考以及设计改进方向.Abstract: The power spectral density of UWB signal stipulated by the Federal Communications Commission (FCC) is not greater than –41.3 dBm/MHz, which limits the transmitting power of ultra wide band (UWB) signal. In order to improve the receiving sensitivity of UWB signal receiver under the condition of limited power and the ranging distance of UWB signal. A long-coherent integration algorithm is designed to improve the signal processing gain, and the simulation of the long-coherent integration algorithm is carried out on two UWB signal systems according to the IEEE 802.15.4 protocol, namely HRP UWB and LRP UWB. The simulation results show that, improving the integration length has an obvious effect on HRP UWB signal, while the gain to LRP UWB signal is limited. The simulation results provide a reference and design direction for the design of UWB signal structure, which will play an important role for the application of communication and navigation integration.
-
[1] KRISHNAVENI B V, REDDY K S, REDDY P R. Wireless indoor positioning techniques based on ultra wideband (UWB) technology[J]. International journal of recent technology and engineering (IJRTE), 2019, 7(5c): 15-22. [2] GAO Y. Robust cooperative positioning using DGPS and UWB for V2X applications[D]. Nottingham: Nottingham Geospatial Institute, University of Nottingham, 2017. [3] HOANG M G, DENIS B, HÄRRI J, et al. Cooperative localization in GNSS-aided VANET switch accurate IR-UWB range measurements[C]//The 13th Workshop on Positioning, Navigation and Communications(WPNC), 2016. DOI: 10.1109/WPNC.2016.7822848 [4] 李飞文. 物联网+UWB定位: 打通万物互联最后0.1米[J]. 中国测绘, 2022(6): 65-67. DOI: 10.3969/j.issn.1005-6831.2022.06.017 [5] SISMA O, GAUGUE A, LIEBE C, et al. UWB radar: vision through a wall[J]. Telecommunication systems, 2008(38): 53-59. DOI: 10.1007/s11235-008-9087-z [6] NAG S, BARNES M A, PAYMENT T, et al. Ultrawideband through-wall radar for detecting the motion of people in real time[J]. Proceedings of SPIE - the international society for optical engineering, 2002(4744): 48-57. DOI: 10.1117/12.488285 [7] 陈静, 缪坤坤, FELIX M. 基于UKF优化多三角加权定位算法的UWB室内定位系统设计[J]. 无线电工程, 2023(3): 669-677. DOI: 10.3969/j.issn.1003-3106.2023.03.021 [8] 王腾, 李永辉, 毕京学, 等. 长廊场景下UWB测距和定位精度分析[J]. 导航定位学报, 2022, 10(6): 173-178. DOI: 10.3969/j.issn.2095-4999.2022.06.023 [9] 蔚保国, 鲍亚川, 杨梦焕, 等. 通导一体化概念框架与关键技术研究进展[J]. 导航定位与授时, 2022, 9(2): 1-14. DOI: 10.19306/j.cnki.2095-8110.2022.02.001 [10] 吴迪. UWB室内定位和通信一体化技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2018. [11] 杨狄, 唐小妹, 李柏渝, 等. 基于超宽带的室内定位技术研究综述[J]. 全球定位系统, 2015, 40(5): 34-40. DOI: 10.13442/j.gnss.1008-9268.2015.05.007 [12] 彭俊杰, 李英华, 王春琦, 等. 非视距环境下的IMU和UWB融合定位系统[J]. 无线电工程, 2022, 52(6): 932-939. DOI: 10.3969/j.issn.1003-3106.2022.06.002