Development of a real-time deformation monitoring system with integrated GNSS and accelerometer
-
摘要: 本文设计了一种基于STM32单片机的全球卫星导航系统(GNSS)和加速度计的数据采集设备,其可以实现实时变形监测应用. 以STM32F103ZET6为主控芯片,利用GNSS板卡和加速度计采集数据,通过4G模块将数据传输到服务器,从服务器读取数据并用Kalman滤波算法对GNSS数据和加速度数据进行融合处理,从而达到实时变形监测的目的,并通过静态实验进行了验证. 实验结果表明:加速度计的基线漂移可以被自动校正,融合后X、Y、Z三个方向位移标准差(STD)均优于1.114 cm,速度STD均优于0.072 cm/s,校正基线漂移后加速度STD均优于0.485 cm/s2.
-
关键词:
- 精密单点定位(PPP) /
- 加速度计 /
- 基线漂移 /
- Kalman滤波 /
- 数据融合
Abstract: This paper designs an STM32 microcontroller based Global Navigation Satellite System (GNSS) and accelerometer data acquisition device that enables real-time deformation monitoring applications. The STM32F103ZET6 is used as the main control chip, and also the GNSS board and accelerometer are used to acquire data, and the data are transmitted to the server through the 4G module. The data are read from the server and the Kalman filter algorithm is used to fuse GNSS data with accelerometer data so that real-time deformation monitoring can be achieved and verified by static experiments. The results show that the baseline drift of the accelerometer can be automatically corrected and the standard deviation of displacement (STD) is better than 1.114 cm in all three directions after fusion; the STD of velocity is better than 0.072 cm/s; and the STD of acceleration is better than 0.485 cm/s2 after correction of baseline drift.-
Key words:
- precise point positioning (PPP) /
- accelerometer /
- baseline drift /
- Kalman filter /
- data fusion
-
表 1 RTCM3格式数据帧结构
名称 长度 内容 帧头 8 bit 11010011 保留字 6 bit 默认为000000 消息长度 10 bit 以byte为单位的消息长度 可变长度消息内容 0~1023 byte 具体消息内容 CRC校验码 24 bit 由前面数据生成的
唯一校验码表 2 4G 模块连接服务器需要的AT指令及其功能
AT指令 说明 +++ 离开透传模式进入AT指令配置 AT+WORKMODE=0 设置仅数据透传模式 AT+DTUMODE=1,1 设置为TCP透传 AT+DSCADDR=1,“TCP”,“IP”,端口号 连接服务器 AT+UARTCFG=115200,1,0,0 设置串口参数 AT&W 保存当前配置 AT+CFUN=1,1 模块重启 注:指令“AT+DSCADDR=1,‘TCP’,‘IP’,端口号”中的IP和端口号为实际所连服务器的IP和端口号. 表 3 静止状态下原始加速度及校正基线漂移之后加速度的平均值和STD
统计量 X方向 Y方向 Z方向 原始加速度/(cm·s−2) 平均值 12.812 0 14.706 4 976.076 5 STD 0.477 7 0.338 1 0.484 4 去除基线漂移后的
加速度/(cm·s−2)平均值 −0.000 1 −0.000 1 0.000 1 STD 0.480 7 0.337 6 0.484 3 表 4 数据融合前后速度的平均值和STD
统计量 X方向 Y方向 Z方向 融合前的速度/(cm·s−1) 平均值 0.378 6 −0.071 9 0.334 4 STD 1.368 3 0.793 3 1.553 4 融合后的速度/(cm·s−1) 平均值 0.000 3 0.002 2 0.000 1 STD 0.070 4 0.051 5 0.071 1 -
[1] WEBER E, CONVERTITO V, IANNACCONE G, et al. An advanced seismic network in the southern apennines (Italy) for seismicity investigations and experimentation with earthquake early warning[J]. Seismological research letters, 2007, 78(6): 622-634. DOI: 10.1785/gssrl.78.6.622 [2] ZOLLO A, LANNACCONE G, LANCIERI M, et al. Earthquake early warning system in southern Italy: methodologies and performance evaluation[J]. Geophysical research letters, 2009, 36(5): L00B07. DOI: 10.1029/2008gl036689 [3] CROWELL B W, BOCK Y, SQUIBB M B. Demonstration of earthquake early warning using total displacement waveforms from real-time GPS networks[J]. Seismological research letters, 2009, 80(5): 772-782. DOI: 10.1785/gssrl.80.5.772 [4] GENRICH J F, BOCK Y. Instantaneous geodetic positioning with 10-50 Hz GPS measurements: noise characteristics and implications for monitoring networks[J]. Journal of geophysical research, 2006, 111(B3): B03403. DOI: 10.1029/2005jb003617 [5] LARSON K M, BILICH A, AXELRAD P. Improving the precision of high-rate GPS[J]. Journal of geophysical research, 2007, 112(B5): B05422. DOI: 10.1029/2006jb004367 [6] IWAN W D, MOSER M A, PENG C Y. Some observations on strong-motion earthquake measurement using a digital accelerograph[J]. Bulletin of the seismological society of America, 1985, 75(5): 1225-1246. DOI: 10.1007/bf01449758 [7] BOORE D M. Effect of baseline corrections on displacements and response spectra for several recordings of the 1999 Chi-Chi, Taiwan, earthquake[J]. Bulletin of the seismological society of America, 2001, 91(5): 1199-1211. DOI: 10.1785/0120000703 [8] WU Y M, WU C F. Approximate recovery of coseismic deformation from Taiwan strong-motion records[J]. Journal of seismology, 2007, 11(2): 159-170. DOI: 10.1007/s10950-006-9043-x [9] WANG R, SCHURR B, MILKEREIT C, et al. An improved automatic scheme for empirical baseline correction of digital strong-motion records[J]. Bulletin of the seismological society of America, 2011, 101(5): 2029-2044. DOI: 10.1785/0120110039 [10] EMORE G L, HAASE J S, CHOI K, et al. Recovering seismic displacements through combined use of 1-Hz GPS and strong-motion accelerometers[J]. Bulletin of the seismological society of America, 2007, 97(2): 357-378. DOI: 10.1785/0120060153 [11] SMYTH A, WU M. Multi-rate Kalman filtering for the data fusion of displacement and acceleration response measurements in dynamic system monitoring[J]. Mechanical systems and signal processing, 2007, 21(2): 706-723. DOI: 10.1016/j.ymssp.2006.03.005 [12] BOCK Y, MELGAR D, CROWELL B W. Real-time strong-motion broadband displacements from collocated GPS and accelerometers[J]. Bulletin of the seismological aociety of America, 2011, 101(6): 2904-2925. DOI: 10.1785/0120110007 [13] TU R, LIU J H, LU C X, et al. Cooperating the BDS, GPS, GLONASS and strong-motion observations for real-time deformation monitoring[J]. Geophysical journal international, 2017, 209(3): 1408-1417. DOI: 10.1093/gji/ggx099 [14] SHU Y M, FANG R X, GENG J H, et al. Broadband velocities and displacements from integrated GPS and accelerometer data for high-rate seismogeodesy[J]. Geophysical research letters, 2018, 45(17): 8939-8948. DOI: 10.1029/2018gl079425 [15] GENG J H, BOCK Y, MELGAR D, et al. A new seismogeodetic approach applied to GPS and accelerometer observations of the 2012 brawley seismic swarm: implications for earthquake early warning[J]. Geochemistry, geophysics, geosystems, 2013, 14(7): 2124-2142. DOI: 10.1002/ggge.20139 [16] GENG J H, MELGAR D, BOCK Y, et al. Recovering coseismic point ground tilts from collocated high-rate GPS and accelerometers[J]. Geophysical research letters, 2013, 40(19): 5095-5100. DOI: 10.1002/grl.51001 [17] TU R, GE M R, WANG R J, et al. A new algorithm for tight integration of real-time GPS and strong-motion records, demonstrated on simulated, experimental, and real seismic data[J]. Journal of seismology, 2014, 18(1): 151-161. DOI: 10.1007/s10950-013-9408-x [18] TU R, CHEN K J. Tightly integrated processing of high-rate GPS and accelerometer observations by real-time estimation of transient baseline shifts[J]. The journal of navigation, 2014, 67(5): 869-880. DOI: 10.1017/S0373463314000150 [19] TU R, LIU J, ZHANG R, et al. Real-time kinematic positioning algorithm with GNSS and high-frequency accelerometer observations for broadband signals[J]. Measurement science and technology, 2019, 31(3): 035007. DOI: 10.1088/1361-6501/ab5d87 [20] PASSMORE P R, JACKSON M, ZIMAKOV L G, et al. Integrated seismogeodetic systsem with high-resolution, real-time GNSS and accelerometer observation for earthquake early warning application[C]// American Geophysical Union, Fall Meeting, 2014. [21] 曾燃, 耿江辉, 辛绍铭, 等. SMAG2000: 一体化GNSS强震仪及其地震监测性能分析[J]. 武汉大学学报(信息科学版): 2023, 48(3): 443-452. [22] XIN S M, GENG J H, ZENG R, et al. In-situ real-time seismogeodesy by integrating multi-GNSS and accelerometers[J]. Measurement, 2021, 179(5). DOI: 10.1016/j.measurement.2021.109453