[1] |
漆贯荣. 时间科学基础[M]. 北京: 高等教育出版社, 2006.
|
[2] |
刘经南. GNSS连续运行参考站网的下一代发展方向—地基地球空间信息智能传感网络[J]. 武汉大学学报 (信息科学版), 2011, 36(3): 253-256.
|
[3] |
ALLAN D W, THOMAS C. Technical directives for standardization of GPS time receiver software: to be implemented for improving the accuracy of GPS common-view time transfer[J]. Metrologia, 1994(31): 69-79. DOI: 10.1088/0026-1394/31/1/014
|
[4] |
WEISS M A, PETIT G, JIANG Z. A comparison of GPS common-view time transfer to all-in-view [C]// Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition, 2015.
|
[5] |
PETIT G, JIANG Z. GPS all in view time transfer for TAI computation[J]. Metrologia, 2008, 45(1): 35-45. DOI: 10.1088/0026-1394/45/1/006
|
[6] |
JIANG Z, LEWANDOWSKI W. Use of GLONASS for UTC time transfer[J]. Metrologia, 2012, 49: 57. DOI: 10.1088/0026-1394/49/1/009
|
[7] |
RIZOS C. Multi-constellation GNSS/RNSS from the perspective of high accuracy users in Australia[J]. Spatial science, 2008, 53(2): 29-63. DOI: 10.1080/14498596.2008.9635149
|
[8] |
杨元喜. 北斗卫星导航系统的进展、贡献与挑战[J]. 测绘学报, 2010, 39: 1-6.
|
[9] |
LARSON KM, LEVINE J. Carrier-Phase Time transfer[J]. IEEE transaction on ultrasonic, ferroelectrics, and frequency control, 1999, 46(4): 1001-1012. DOI: 10.1109/58.775667
|
[10] |
RAY J, PETIT G. IGS/BIPM pilot project interim report[C]//presented to 14th Meeting of the Consultative Committee for Time and Frequency, at BIPM, Sèvres, France, 1999.
|
[11] |
RAY J. IGS/BIPM pilot project to study time and frequency comparisons using GPS phase and code measurements[C]//15th Meeting of the Consultative Committee for Time and Frequency (CCTF) 20-21 June 2001.
|
[12] |
聂桂根. 高精度GPS测时与时间传递的误差分析与应用研究[D]. 武汉: 武汉大学, 2002.
|
[13] |
COSTA R, ORGIAZZI D, PETTITI V, et al. Performance comparison and stability characterization of timing and geodetic GPS receivers at IEN[C]//Frequency and Time Forum, 2004: 279-286.
|
[14] |
JIANG Z, DACH R, PETIT G, et al. Comparison and combination of TAI time links with continuous GPS carrier phase results[C]// Proceedings of the 20th European Frequency and Time Forum, 2006.
|
[15] |
PETIT G, JIANG Z. Precise Point Positioning for TAI computation[C]//IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum, 2007.
|
[16] |
张小红, 蔡诗响, 李星星, 等. 利用GPS精密单点定位进行时间传递精度分析[J]. 武汉大学学报(信息科学版), 2010, 35(3): 274-278.
|
[17] |
YAO J, LEVINE J. A new algorithm to eliminate GPS carrier-phase time transfer boundary discontinuity[C]//ION Precise Time and Time Interval Meeting, 2013.
|
[18] |
于合理, 郝金明, 刘伟平, 等. 附加原子钟物理模型的PPP 时间传递算法[J]. 测绘学报, 2016, 45(11): 1285-1292. DOI: 10.11947/j.AGCS.2016.20160217
|
[19] |
孙清峰, 蔡昌盛, 董州楠, 等. 基于GNSS多星座PPP的时间传递精度分析[J]. 测绘, 2017, 40(5): 195-198. DOI: 10.3969/j.issn.1674-5019.2017.05.001
|
[20] |
吕大千, 曾芳玲, 欧阳晓凤, 等. 时频传递的改进整数相位钟方法[J]. 测绘学报, 2019, 48(7): 889-897.
|
[21] |
TU R, ZHANG P F, ZHANG R, et al. Modeling and performance analysis of precise time transfer based on BDS triple-frequency un-combined observations[J]. Journal of geodesy, 2019, 93(12): 837-847. DOI: 10.1007/s00190-018-1206-3
|
[22] |
TU R, ZHANG P F, ZHANG R, et al. Precise time transfer model suitable for short baseline link based on GPS single-differenced observation and ambiguity resolution technology[J]. Acta Geodaetica et Geophysica, 2021, 56: 345-355. DOI: 10.1007/s40328-021-00332-w
|
[23] |
TU R, ZHANG P F, ZHANG R, et al. Real-time and dynamic time transfer method based on double-differenced real-time kinematic mode[J]. IET radar, sonar and navigation, 2021, 15(1): 143-153. DOI: 10.1049/RSN2.12027
|
[24] |
张鹏飞. GNSS载波相位时间传递关键技术与方法研究[D]. 北京: 中国科学院大学, 2019.
|
[25] |
葛玉龙. 多频多系统精密单点定位时间传递方法研究[D]. 北京: 中国科学院大学, 2020.
|
[26] |
ORGIAZZI D, TAVELLA P, LAHAYE F. Experimental assessment of the time transfer capability of precise point positioning (PPP)[C]// Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition, 2005.
|
[27] |
DACH R, HUGENTOBLER U, FRIDEZ P, et al. User’s manual of Bernese GPS software: version 5.0[M]. Astronomical Institute, University of Bern, 2007.
|
[28] |
DEFRAIGNE P, BRUYNINX C. On the link between GPS pseudorange noise and day-boundary discontinuities in geodetic time transfer solutions[J]. GPS solutions., 2007, 11(4): 239-249. DOI: 10.1007/s10291-007-0054-z
|
[29] |
ESTEBAN H, PALACIO J, GALINDO F J, et al. Improved GPS-based time link calibration involving ROA and PTB[J]. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2010, 57(3): 714-720. DOI: 10.1109/TUFFC.2010.1469
|
[30] |
袁媛, 仲崇霞, 张升康. GPS载波相位时间传递软件的实现[J]. 宇航计测技术, 2013, 33(5): 43-51. DOI: 10.3969/j.issn.1000-7202.2013.05.010
|
[31] |
PETIT G, KANJ A, LOYER S, et al. 1×10−16 Frequency transfer by GPS PPP with integer ambiguity resolution[J]. Metrologia, 2015, 52(2): 301-309. DOI: 10.1088/0026-1394/52/2/301
|
[32] |
ZHANG P F, TU R, ZHANG R, et al. Combining GPS, BeiDou, and Galileo satellite systems for time and frequency transfer based on carrier phase observations[J]. Remote sensing, 2018, 10(2): 324. DOI: 10.3390/rs10020324
|
[33] |
高玉平, 漆溢, 王正明. 多通道时间传递接收机NTSCGPS-1的研制与测试[J]. 全球定位系统, 2004(2): 16-19,23. DOI: 10.3969/j.issn.1008-9268.2004.02.004
|
[34] |
高玉平, 王平利, 冯瑞权, 等. 共视精密时间服务系统的应用[J]. 时间频率学报, 2016, 39(3): 170-177. DOI: 10.13875/j.issn.1674-0637.2016-03-0170-08
|
[35] |
ROVERA G D, TORRE J-M, SHERWOOD R, et al. Link calibration against receiver calibration: an assessment of GPS time transfer uncertainties[J]. Metrologia, 2014, 51(5): 476. DOI: 10.1088/0026-1394/51/5/476
|
[36] |
刘娅, 陈瑞琼, 赵志雄, 等. UTC(NTSC)远程高精度复现方法研究及工程实现[J]. 时间频率学报, 2016, 39(3): 178-192. DOI: 10.13875/j.issn.1674-0637.2016-03-0178-15
|
[37] |
GUO W F, SONG W W, NIU X J, et al. Foundation and performance evaluation of real-time GNSS high-precision one-way timing system[J]. GPS solutions, 2019, 23(1): 23. DOI: 10.1007/s10291-018-0811-1
|
[38] |
梁坤, 方维, 顾杨义, 等. 远程时间传递与溯源方法、装置及体系[J]. 计量科学与技术, 2021, 65(4): 3-13.
|
[39] |
XIA X, QIN H L, LU H. High-precision time synchronization of kinematic navigation system using GNSS RTK differential carrier phase time transfer[J]. Measurement, 2021(176): 102241-109132. DOI: 10.1016/J.MEASUREMENT.2021.109132
|
[40] |
施闯, 辜声峰, 楼益栋, 等. 广域实时精密定位与时间服务系统[J]. 测绘学报, 2022, 51(7): 1206-1214. DOI: 10.11947/j.AGCS.2022.20220153
|
[41] |
DEFRAIGNE P, BRUYNINX C, GUYENNON N. PPP and phase-only GPS frequency transfer[C]//IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum, 2007.
|
[42] |
TU R, ZHANG P F, ZHANG R, et al. Modeling and assessment of precise time transfer by using BDS triple-frequency signals[J]. Sensors, 2018, 18(4): 1017. DOI: 10.3390/s18041017
|
[43] |
WANG J L, SATIRAPOD C, RIZOS C. Stochastic assessment of GPS carrier phase measurements for precise static relative positioning[J]. Journal of geodesy, 2002, 76(2): 95-104. DOI: 10.1007/s00190-001-0225-6
|
[44] |
GUO F, ZHANG X H, WANG J L. Timing group delay and differential code bias corrections for BeiDou positioning[J]. Journal of geodesy, 2015(89): 427-445. DOI: 10.1007/s00190-015-0788-2
|
[45] |
SATIRAPOD C, LUANSANG M. Comparing stochastic models used in GPS precise point positioning technique[J]. Survey review, 2008(40): 188-194. DOI: 10.1179/003962608X290988
|
[46] |
GE M, GENDT G, ROTHACHER M, et al. Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations[J]. Journal of geodesy, 2008, 82(7): 389-399. DOI: 10.1007/s00190-007-0208-3
|
[47] |
安向东, 陈华, 姜卫平, 等. 长基线GLONASS模糊度固定方法及实验分析[J]. 武汉大学学报(信息科学版), 2019, 5(9): 690-698. DOI: 10.13203/j.whugis20170091
|
[48] |
李星星. GNSS精密单点定位及非差模糊度快速确定方法研究[D]. 武汉: 武汉大学, 2013.
|
[49] |
GENG J, MENG X L, DODSON A, et al. Integer ambiguity resolution in precise point positioning: method comparison[J]. Journal of geodesy, 2010, 84(9): 569-581. DOI: 10.1007/s00190-010-0399-x
|
[50] |
张永军, 徐绍铨, 张小红. GPS/GLONASS组合定位中模糊度的处理[J]. 武汉大学学报(信息科学版), 2001, 26(1): 58-63.
|
[51] |
ZHANG P F, TU R, GAO Y P, et al. Improving Galileo’s carrier-phase time transfer based on prior constraint information[J]. Journal of navigation, 2019, 72(1): 1-19. DOI: 10.1017/S0373463318000486
|
[52] |
ZHANG P F, TU R, LU X C, et al. Performance of GPS precise time and frequency transfer with integer ambiguity resolution[J]. Measurement science technology, 2021, 33(4): 045005. DOI: 10.1088/1361-6501/ac3a30
|
[53] |
ZHANG P F, TU R, GAO Y P, et al. Atomic clock modeling augmentating time and frequency transfer using carrier phase observation[J]. IET radar, sonar and navigation, 2020, 14(3): 1202-1210. DOI: 10.1049/iet-rsn.2020.0103
|
[54] |
ZHANG P F, TU R, TAO L L, et al. Preliminary analysis of intersystem biases in BDS-2/BDS-3 precise time and frequency transfer[J]. Remote sensing, 2022, 14(18): 4594. DOI: 10.3390/rs14184594
|
[55] |
TU R, ZHANG P F, ZHANG R, et al. GNSS time offset monitoring based on single difference among systems[J]. IET radar, sonar and navigation, 2020, 14(1): 299-302. DOI: 10.1049/iet-rsn.2019.0387
|
[56] |
TU R, HONG J, ZHANG P F, et al. Multiple GNSS inter-system biases in precise time transfer[J]. Measurement science and technology, 2019, 30(11): 115003. DOI: 10.1088/1361-6501/ab32b3
|
[57] |
ZHANG P F, TU R, HAN J Q, et al. Characterization of biases between BDS-3 and BDS-2, GPS, Galileo, and GLONASS observations and their effect on precise time and frequency transfer[J]. Measurement science and technology, 2021, 32(3): 035006. DOI: 10.1088/1361-6501/ABC963
|
[58] |
ZHANG P F, TU R, GAO Y P, et al. Evaluation of carrier-phase precise time and frequency transfer using different analysis centre products for GNSSs[J]. Measurement science and technology, 2019, 30(6): 065003. DOI: 10.1088/1361-6501/ab0f7f
|
[59] |
ZHANG P F, TU R, LU X C, et al. Performance of multi-GNSS real-time UTC(NTSC) time and frequency transfer service using carrier phase observations[J]. Remote sensing, 2021, 13(20): 4184. DOI: 10.3390/RS13204184
|
[60] |
ZHANG P F, TU R, GAO Y P, et al. Performance of Galileo precise time and frequency transfer models using quad-frequency carrier phase observations[J]. GPS solutions, 2020, 24(2): 40. DOI: 10.1007/s10291-020-0955-7
|
[61] |
ZHANG P F, TU R, ZHANG R, et al. A model to obtain timing solution with un-differenced observations suitable for single-station/multi-station, a case study of BDS data[J]. Acta geodaetica et geophysica, 2020, 55(10): 515-529. DOI: 10.1007/s40328-020-00297-2
|
[62] |
ZHANG P F, TU R, ZHANG R, et al. Time and frequency transfer using BDS-2 and BDS-3 carrier phase observations[J]. IET radar, sonar and navigation, 2019, 13(8): 1249-1255. DOI: 10.1049/iet-rsn.2019.0011
|
[63] |
TU R, ZHANG P F, ZHANG R, et al. An approach for GPS precise time transfer using an augmentation information and zero-differenced PPP model[J]. IET radar, sonar and navigation, 2018, 12(8): 801-806. DOI: 10.1049/iet-rsn.2017.0607
|
[64] |
YAO J, SKAKUN I, JIANG Z H, et al. A detailed comparison of two continuous GPS carrier-phase time transfer techniques[J]. Metrologia, 2015, 52(5): 666-676. DOI: 10.1088/0026-1394/52/5/666
|
[65] |
RAY J, SENIOR K. IGS/BIPM pilot project: GPS carrier phase for time/frequency transfer and time scale formation[J]. Metrologia, 2003, 40(3): S270-S288. DOI: 10.1088/0026-1394/40/3/307
|
[66] |
RAY J, SENIOR K. Geodetic techniques for time and frequency comparisons using GPS phase and code measurements[J]. Metrologia, 2005, 42(4): 215. DOI: 10.1088/0026-1394/42/4/005
|
[67] |
ZHANG P F, TU R, GAO Y P, et al. Day-boundary discontinuity in GPS carrier-phase time transfer using geodetic data solution strategy[J]. Journal of surveying engineering, 2018, 145(1): 04018013. DOI: 10.1061/(ASCE)SU.1943-5428.0000268
|
[68] |
ZHANG P F, TU R, GAO Y P, et al. Improving the performance of Multi-GNSS time and frequency transfer using robust helmert variance component estimation[J]. Sensors, 2018, 18(9): 2878. DOI: 10.3390/s18092878
|
[69] |
ZHANG P F, TU R, GAO Y P, et al. The study of time link calibration based on GPS carrier phase observation[J]. IET radar, sonar & navigation, 2018, 12(11): 1330-1335. DOI: 10.1049/iet-rsn.2018.5096
|
[70] |
ZHANG P F, TU R, GAO Y P, et al. Impact of BeiDou satellite-induced code bias variations on precise time and frequency transfer[J]. Measurement science and technology, 2019, 30(3): 035007. DOI: 10.1088/1361-6501/aafec1
|
[71] |
LI X X, WANG Q Y, WU J Q, et al. Multi-GNSS products and services at iGMAS wuhan innovation application center: strategy and evaluation[J]. Satellite navigation, 2022, 3(1): 20. DOI: 10.1186/s43020-022-00081-3
|
[72] |
赵齐乐, 许小龙, 马宏阳, 等. GNSS实时精密轨道快速计算方法及服务[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2157-2166. DOI: 10.13203/j.whugis20180374
|
[73] |
KAZMIERSKI K, SOŚNICA K, HADAS T. Quality assessment of multi-GNSS orbits and clocks for real-time precise point positioning[J]. GPS solution, 2018, 22(11): 1-12. DOI: 10.1007/s10291-017-0678-6
|
[74] |
ZHANG P F, TU R, GAO Y P, et al. Comparison of multi-GNSS time and frequency transfer performance using overlap-frequency observations[J]. Remote sensing, 2021, 13(16): 3130. DOI: 10.3390/RS13163130
|
[75] |
贺成艳. GNSS空间信号质量评估方法研究及测距性能影响分析[D]. 北京: 中国科学院大学, 2013.
|
[76] |
FABIAN R. Statistical Inference for Safe and Continuous Navigation in the Presence of GNSS Spoofing[D]. Stanford University, 2021.
|
[77] |
PHELTS R E, WALTER T. Nominal GPS signal deformations 10 years of WAAS signal quality monitoring[C]//International Technical Meeting of The Institute of Navigation, 2022.
|
[78] |
HENG L. Safe Satellite Navigation with Multiple Constellations Global Monitoring of GPS and GLONASS Signal-in-Space Anomalies[D]. Stanford University, 2012.
|
[79] |
范丽红. BDS卫星空间信号异常探测及性能评估方法研究[D]. 西安: 长安大学, 2018.
|
[80] |
FAN L H, TU R, ZHANG R, et al. Real-time BDS signal-in-space anomaly detection method considering receiver anomalies[J]. IET radar, sonar & navigation, 2019, 13(12): 2220-2229. DOI: 10.1049/iet-rsn.2019.0166
|
[81] |
FAN L H, TU R, ZHANG R, et al. An improved method for detecting BeiDou signal-in-space anomalies from precise ephemerides[J]. Acta geodaetica et geophysica, 2019, 54(4): 567-581. DOI: 10.1007/s40328-019-00268-2
|
[82] |
FAN L H, TU R, ZHANG R, et al. Evaluation of signal-in-space continuity and availability for beidou satellite considering failures[J]. Journal of navigation, 2020, 73(2): 1-12. DOI: 10.1017/S0373463319000602
|
[83] |
FAN L H, TU R, ZHANG R, et al. Detection and Analysis of Galileo Signal-in-Space Anomalies from 2017-2018[J]. IET radar, sonar & navigation, 2020, 14(11): 1690-1696. DOI: 10.1049/iet-rsn.2020.0191
|
[84] |
KAZUMA G. Safety Critical Bounds for Precise Positioning for Aviation and Autonomy[D]. Stanford University, 2021.
|
[85] |
BLANCH J, WALTER T. Fast protection levels for fault detection with an application to advanced RAIM[J]. IEEE transactions on aerospace and electronic systems, 2021, 57(1): 55-65. DOI: 10.1109/TAES.2020.3011997
|
[86] |
王爱兵. 广域差分GPS用户端算法研究[D]. 郑州: 解放军信息工程大学, 2007.
|
[87] |
张倩倩. 新型RAIM算法的研究及其应用[D]. 郑州: 解放军信息工程大学, 2015.
|
[88] |
KATZ A, PULLEN S, SHERMAN L, et al. ARAIM for military users: ISM parameters, constellation-check procedure and performance estimates[C]// International Technical Meeting of The Institute of Navigation, 2021.
|
[89] |
孟骞. 北斗导航接收机信号捕获及完好性监测关键技术研究[D]. 南京: 南京航空航天大学, 2018.
|
[90] |
袁运斌, 侯鹏宇, 张宝成. GNSS非差非组合数据处理与PPP-RTK高精度定位[J]. 测绘学报, 2022, 51(7): 1225-1238. DOI: 10.11947/j.issn.1001-1595.2022.7.chxb202207014
|
[91] |
张宝成, 柯成, 查九平, 等. 非差非组合PPP-RTK: 模型算法, 终端样机与实测结果[J]. 测绘学报, 2022, 51(8): 1725-1735. DOI: 10.11947/j.issn.1001-1595.2022.8.chxb202208006
|
[92] |
胡永辉, 张道农, 李延, 等. 现代授时技术[C]//2013年中国电机工程学会年会论文集, 2013.
|
[93] |
梁益丰, 许江宁, 吴苗, 等. 高精度授时技术发展现状分析[J]. 现代导航, 2018, 9(5): 331-334. DOI: 10.3969/j.issn.1674-7976.2018.05.005
|
[94] |
华宇, 郭伟, 燕保荣, 等. 我国授时服务体系发展现状分析[J]. 时间频率学报, 2016, 39(3): 193-201. DOI: 10.13875/j.issn.1674-0637.2016-03-0193-09
|
[95] |
冀虎, 张达, 戴锐, 等. 一种适用于地下矿山分布式系统的高精度时间同步系统设计及实现[J]. 中国矿业, 2019, 28(S2): 219-222.
|
[96] |
幺永超, 何展翔. 基于水声授时的海洋电磁采集站时钟同步方法研究[C]//中国地球物理学会地球物理技术委员会第九届学术会议—全域地球物理探测与智能感知学术研讨会会议摘要集, 2021.
|
[97] |
原韬雄. 全力校准国家标准时间[N]. 人民日报, 2022-06-14(6).
|