Precision analysis of BDS-3 multi-frequency undifferenced and uncombined precision orbit determination
-
摘要: 针对北斗三号卫星导航系统(BDS-3)五频点观测数据和非差非组合精密定轨理论,介绍了非差非组合观测模型和参数估计方法,提出了利用K均值聚类算法(K-means)进行测站选取的策略,分析并讨论了非差非组合方法的优势. 通过K-means和人工经验选取两种测站选取方案,分别使用BDS-3五频,B1C+B2a、B1I+B3I三种频率选择方式,利用30个观测站,对BDS-3中轨道地球卫星(MEO)和倾斜地球同步轨道卫星(IGSO)进行精密定轨处理. 结果表明:当接收B1C+B2a频点观测数据测站不足时,非差非组合方法可以通过利用五频观测数据增加观测数据数量、优化测站布局,提高定轨精度,与B1C+B2a频率组合相比,五频定轨结果切向(A)、法向(C)、径向(R)和三维(3D)方向均方根(RMS)月均值分别提升0.003 m、0.004 m、0.003 m和0.007 m;K-means算法选取的测站与人工经验选取相比,分布更加合理,定轨精度更高,三种频率选择方案MEO卫星3D RMS月均值精度分别提升0.009 m、0.017 m和0.009 m.
-
关键词:
- 北斗卫星导航系统(BDS) /
- 多频 /
- 非差非组合 /
- K均值聚类算法(K-means) /
- 精密定轨
Abstract: In view of the observation data of BDS-3 at 5 frequencies and the theory of un-differenced and un-combined (UDUC) precise orbit determination, this paper introduces the UDUC model and parameter estimation method, proposes the strategy of station selection using the K-means algorithm, and analyzes the advantages of UDUC method. Through two kinds of station selection schemes, manual experience selection and K-means, 3 frequency selection methods of BDS-3 5-frequency, B1C+B2a, B1I+B3I are used respectively, and 30 IGS observation stations are used to carry out precise orbit determination for BDS-3 MEO and IGSO satellites. The experimental results show that when the stations which can receive B1C+B2a frequency observation data are insufficient, the UDUC method can increase the number of observation data and optimize the station layout by using the 5-frequency observation data so that the orbit determination accuracy can be improved. Compared with B1C+B2a, the monthly average RMS of 5-frequency in A, C and R directions increase by 0.003 m, 0.004 m, 0.003 m respectively, and that of 3D RMS increases by about 0.007 m. The stations selected through the K-means algorithm are more reasonably distributed and have higher orbit determination accuracy than manual experience selection scheme. With the 3 frequency selection methods, the monthly average RMS of MEO satellites in A, C and R directions are improved by 0.009 m, 0.017 m, 0.009 m respectively. -
表 1 轨道积分的力模型
项目 模型 地球重力场 GOCO06s N体引力 JPL DE432 行星星历 地球固体潮 IERS Conventions 2010 海潮 FES2014b 全球海潮模型 极潮 IERS Conventions 2010 大气潮汐 AOD1B RL06 大气和海洋质量变化 AOD1B RL06 相对论效应 IERS Conventions 2010 太阳辐射压 Box-wing 模型 地球辐射压 Box-wing 模型 表 2 方案1 不同频率选择方案的3D RMS月均值
m PRN 卫星
类型3D RMS月均值 PRN 卫星
类型3D RMS月均值 S1 S2 S3 S1 S2 S3 C19 MEO 0.061 0.071 0.061 C34 MEO 0.059 0.084 0.063 C20 0.061 0.075 0.061 C36 0.063 0.073 0.067 C21 0.057 0.067 0.057 C37 0.062 0.066 0.061 C22 0.064 0.086 0.064 C41 0.060 0.066 0.057 C23 0.064 0.067 0.066 C42 0.062 0.068 0.061 C24 0.063 0.072 0.067 C43 0.098 0.086 0.100 C25 0.089 0.092 0.088 C44 0.079 0.082 0.082 C26 0.097 0.098 0.095 C45 0.073 0.084 0.071 C27 0.066 0.076 0.068 C46 0.071 0.070 0.074 C28 0.069 0.076 0.070 总体
均值0.070 0.077 0.070 C29 0.070 0.089 0.074 C38 IGSO 0.219 0.188 0.174 C30 0.072 0.079 0.071 C39 0.207 0.194 0.203 C32 0.081 0.076 0.065 C40 0.127 0.129 0.166 C33 0.063 0.076 0.066 总体
均值0.184 0.170 0.181 C35 0.067 0.076 0.065 表 3 方案2 不同频率选择方案的3D RMS月均值
m PRN 卫星
类型3D RMS月均值 PRN 卫星
类型3D RMS月均值 S1 S2 S3 S1 S2 S3 C19 MEO 0.055 0.054 0.055 C35 MEO 0.058 0.053 0.054 C20 0.053 0.052 0.053 C36 0.054 0.052 0.054 C21 0.045 0.045 0.046 C37 0.057 0.050 0.052 C22 0.055 0.054 0.056 C41 0.050 0.049 0.050 C23 0.058 0.055 0.057 C42 0.051 0.051 0.052 C24 0.061 0.061 0.063 C43 0.086 0.085 0.065 C25 0.087 0.085 0.086 C44 0.067 0.064 0.080 C26 0.093 0.089 0.091 C45 0.061 0.058 0.059 C27 0.065 0.063 0.065 C46 0.059 0.056 0.058 C28 0.063 0.065 0.062 总体
均值0.061 0.060 0.061 C29 0.067 0.063 0.065 C38 IGSO 0.213 0.204 0.208 C30 0.063 0.061 0.062 C39 0.201 0.196 0.200 C32 0.057 0.055 0.056 C40 0.127 0.118 0.126 C33 0.054 0.056 0.057 总体
均值0.180 0.173 0.178 C34 0.055 0.052 0.058 表 4 测站使用数量统计
测站选取方案 频率选择方案 S1 S2 S3 方案1 29 20 29 方案2 29 27 29 -
[1] 李星星, 张伟, 袁勇强, 等. GNSS卫星精密定轨综述: 现状, 挑战与机遇[J]. 测绘学报, 2022, 51(7): 1271-1293. DOI: 10.11947/j.issn.1001-1595.2022.7.chxb202207018 [2] 辜声峰. 多频GNSS非差非组合精密数据处理理论及其应用[D]. 武汉: 武汉大学, 2013. [3] 周锋. 多系统GNSS非差非组合精密单点定位相关理论和方法研究[D]. 上海华东师范大学, 2018. [4] 景鑫, 车通宇, 周舒涵, 等. 北斗三号系统开通前后广播星历精度对比分析[J]. 全球定位系统, 2022, 47(4): 23-30. DOI: 10.12265/j.gnss.2022051 [5] 张小红, 柳根, 郭斐, 等. 北斗三频精密单点定位模型比较及定位性能分析[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2124-2130. [6] ZEHENTNER N, MAYER-GURR T. Precise orbit determination based on raw GPS measurements[J]. Journal of geodesy, 2015, 90(3): 275-286. DOI: 10.1007/s00190-015-0872-7 [7] STRASSER S, MAYER-GURR T, ZEHENTNER N. Processing of GNSS constellations and ground station networks using the raw observation approach[J]. Journal of Geodesy, 2018, 93(8): 1045-1057. DOI: 10.1007/s00190-018-1223-2 [8] 曾添, 隋立芬, 阮仁桂, 等. 三频非组合模型的GPS/BDS/Galileo精密定轨[J]. 测绘学报, 2021, 50(2): 169-180. [9] 彭欢欢, 石教坤, 蔡鑫. 基于单通道的Kmeans算法的图像分割[J]. 信息技术与信息化, 2022(1): 39-42. DOI: 10.3969/j.issn.1672-9528.2022.01.011 [10] 彭海驹, 严科文, 林松, 等. 融合kmeans聚类与Hausdorff距离的点云精简算法改进[J]. 地理空间信息, 2022, 20(8): 59-63. DOI: 10.3969/j.issn.1672-4623.2022.08.014 [11] HOFMANN-WELLENHOF B, LICHTENEGGER H, WASLE E. GNSS-global navigation satellite systems: GPS, GLONASS, Galileo, and more[M]. Wien; New York: Springer, 2007. [12] PETIT G, LUZUM B. IERS Conventions(2010), IERS Technical Note 36[R]. [13] 谢劭峰, 潘清莹, 黄良珂, 等. 中国区域ZTD, ZWD高程缩放因子的时空特性分析[J]. 大地测量与地球动力学, 2021, 41(12): 1211-1215. [14] 章迪. GNSS对流层天顶延迟模型及映射函数研究[D]. 武汉: 武汉大学, 2017. [15] 李涌涛, 李建文, 庞鹏, 等. 2017年9月磁暴期间电离层TEC变化分析[J]. 全球定位系统, 2018, 43(4): 42-47. [16] 李涌涛, 李建文, 顾晨钟, 等. Linux Shell在电离层TEC格网数据提取和分析中的应用[J]. 全球定位系统, 2019, 44(3): 81-87. [17] HOQUE M M, JAKOWSKI N. Estimate of higher order ionospheric errors in GNSS positioning[J]. Radio science, 2008, 43(5): 1-15. DOI: 10.1029/2007RS003817 [18] TEUNISSEN P J G. The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation[J]. Journal of geodesy, 1995, (70): 65-82. DOI: 10.1007/BF00863419 [19] CHANG X-W, YANG X, ZHOU T. MLAMBDA: a modified LAMBDA method for integer least-squares estimation[J]. Journal of geodesy, 2005, 79(9): 552-565. DOI: 10.1007/s00190-005-0004-x [20] CARRERE L, LYARD F, CANCET M, et al. FES 2014, a new tidal model on the global ocean with enhanced accuracy in shallow seas and in the Arctic region[A]. Egu General Assembly Conference[C]. 2015. [21] DOBSLAW H, BERGMANN-WOLF I, DILL R, et al. A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06[J]. Geophysical journal international, 2017, 211(1): 263-269. DOI: 10.1093/gji/ggx302 [22] 张龙平, 党亚民, 成英燕, 等. 北斗GEO/IGSO/MEO卫星定轨地面站构型影响分析及其优化[J]. 测绘学报, 2016, 45(S2): 82-92. [23] 李星星, 黄健德, 袁勇强, 等. Galileo三频非组合精密定轨模型及精度评估[J]. 测绘学报, 2020, 49(9): 1120-1130. DOI: 10.11947/j.AGCS.2020.20200320