The technology of GNSS interference detection and identification based on navigation receiver
-
摘要: 全球卫星导航系统(GNSS)已广泛地应用于各种军民系统中,但由于GNSS信号弱,同时民用信号格式是公开的,因此极易受到各种无意或有意的电磁干扰. 对于GPS L1 C/A码,高于−160 dBm/Hz的噪声就会对接收机的捕获造成干扰,而频谱干扰监测设备的监测灵敏度通常为−150 dBm/Hz,因此无法实现卫星导航弱干扰信号的监测,并且通用的频谱监测接收机也无法实现卫星导航欺骗干扰监测. 针对利用导航接收机的输出信息,提出了联合接收机输出的自动增益控制(AGC)、载噪比(
${\rm{C/{N_0}}}$ )及位置信息实现了卫星导航弱压制干扰和欺骗干扰的检测与识别. 通过搭建实际测试环境,测取实测数据对本文的方法进行验证,测试结果表明,本文的方法能够实现欺骗干扰和压制干扰的检测与识别,检测准确率能够达到96%,压制干扰和欺骗干扰的识别准确率能够达到94%.-
关键词:
- 全球卫星导航系统(GNSS) /
- 载噪比(C/N0) /
- 自动增益控制(AGC) /
- 接收机 /
- 检测 /
- 识别
Abstract: Global Navigation Satellite System (GNSS) has been widely used in various military and civil systems. But the GNSS signal is weak, and the format of civil signal is open, so it is extremely vulnerable to various electromagnetic interference. For GPS L1 C/A code, the noise higher than −160 dBm/Hz will affect the acquisition of the receiver. But generally, the sensitivity of spectrum interference monitoring equipment is −150 dBm/Hz and cannot detect the weak interference. This paper proposed methods that utilize the information of automatic gain control (AGC), carrier to noise ratio (${\rm{C/{N_0}}}$ ) and position of the general receiver to realize jamming and spoofing detection and identification. The methods were tested by setting up a real environment and the results showed that the methods in this paper can detect and identify GNSS jamming and spoofing. The detection accuracy can reach 96%, and the identification accuracy of jamming and spoofing can reach 94%. -
表 1 干扰对 AGC、C/N0及位置输出的影响
干扰类型 AGC C/N0 位置偏差 弱压制
干扰随着干扰功率的
增大,AGC减小随着干扰功率的
增大,C/N0减小随着干扰功率增大,位置偏差增大,但偏差范围
相对不大弱欺骗
干扰干扰功率通常高于正常卫星信号功率3~5 dB,AGC会减小,但减小范围小 由于干扰功率高
于正常卫星信号,C/N0会增大成功欺骗接收机后,会引起比较大的位置偏差 -
[1] 殷赞, 张发祥, 甄卫民, 等. GNSS干扰监测定位系统设计与实现[J]. 全球定位系统, 2016, 41(6): 48-54. DOI: 10.13442/j.gnss.1008-9268.2016.06.010 [2] BASTIDE F, AKOS D, MACABIAU C, et al. Automatic gain control (AGC) as an interference assessment tool[C]//The 16th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS/GNSS 2003), 2003: 2042-2053. DOI: 10.5935/0103-5053.20150119 [3] BHUIYAN M Z H, AIROS E, KUUSNIEMI H, et al. The impact of interference on GNSS receiver observables—a running digital sum based simple jammer detector[J]. Radioengineering, 2014, 23(3): 898-906. [4] 郭海玉, 鲁祖坤, 陈飞强, 等. 窄带与脉冲干扰对卫星导航信号载噪比的影响[J]. 全球定位系统, 2021, 46(1): 50-56. DOI: 10.12265/j.gnss.2020100901 [5] 胡寿松. 自动控制原理. 第5版. 北京: 科学出版社, 2007: 7-23. [6] 叶宝盛. GNSS 抗干扰接收机技术研究[D]. 成都: 电子科技大学, 2010. [7] YANG J H, KANG C H, KIM S Y, et al. Intentional GNSS interference detection and characterization algorithm using AGC and adaptive IIR notch filter[J]. International journal of aeronautical and space sciences, 2012, 13(4): 491-498. DOI: 10.5139/IJASS.2012.13.4.491 [8] BASTIDE F, CHATRE E, MACABIAU C. GPS interference detection and identification using multicorrelator receivers[C]//Proceedings of the 14th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2001), 2001: 872-881. [9] CALCAGNO R, FAZIO S, SAVASTA S, et al. An interference detection algorithm for COTS GNSS receivers[C]//The 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC), 2011. DOI: 10.1109/NAVITEC.2010.5708008 [10] 邓旭, 吕志伟, 周玟龙, 等. 采用载噪比的卫星导航欺骗检测算法设计[J]. 导航定位学报, 2022, 10(2): 109-118. DOI: 10.16547/j.cnki.10-1096.20220214 [11] 董树理, 刘敏, 许光飞. 卫星导航欺骗信号检测技术研究[J]. 无线电通信技术, 2019, 45(5): 550-554. DOI: 10.3969/j.issn.1003-3114.2019.05.016 [12] BORIO D, DOVIS F, KUUSNIEMI H, et al. Impact and detection of GNSS jammers on consumer grade satellite navigation receivers[J]. Proceedings of the IEEE, 2016, 104(6): 1233-1245. DOI: 10.1109/JPROC.2016.2543266