留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卫星导航增强中的电离层扰动影响研究

刘钝 李锐

刘钝, 李锐. 卫星导航增强中的电离层扰动影响研究[J]. 全球定位系统, 2023, 48(1): 3-13. doi: 10.12265/j.gnss.2022209
引用本文: 刘钝, 李锐. 卫星导航增强中的电离层扰动影响研究[J]. 全球定位系统, 2023, 48(1): 3-13. doi: 10.12265/j.gnss.2022209
LIU Dun, LI Rui. A study on impacts of ionospheric disturbances for GNSS augmentation[J]. GNSS World of China, 2023, 48(1): 3-13. doi: 10.12265/j.gnss.2022209
Citation: LIU Dun, LI Rui. A study on impacts of ionospheric disturbances for GNSS augmentation[J]. GNSS World of China, 2023, 48(1): 3-13. doi: 10.12265/j.gnss.2022209

卫星导航增强中的电离层扰动影响研究基于系统可靠性工程的视角

doi: 10.12265/j.gnss.2022209
基金项目: 国家科技部重点研发计划项目(2020YFB0505603)
详细信息
    作者简介:

    刘钝:(1973-),男,硕士,高级工程师,主要研究方向为卫星导航、环境探测及无线电波传播技术

    李锐:(1976—),男,博士后,高级工程师,主要研究方向为无线电导航、卫星导航及组合导航技术

    通信作者:

    刘 钝 E-maile: dun.l@163.com

  • 中图分类号: P228.4

A study on impacts of ionospheric disturbances for GNSS augmentationFrom the perspective of system reliability engineering

  • 摘要: 电离层扰动对全球卫星导航系统(GNSS)增强系统影响严重且复杂. 现有GNSS增强系统电离层扰动分析方法主要基于中纬电离层环境设计,缺乏针对低纬地区扰动环境影响的针对性,为此提出利用可靠性工程方法开展增强系统电离层扰动影响研究. 利用系统可靠性工程中的故障模式分析方法对GNSS增强系统中的电离层扰动影响进行分析,明确了不同扰动现象及其相应的影响机制. 分析了GNSS增强系统中的电离层扰动检测方法,指出现有技术难以满足中低纬区域电离层扰动对增强系统复杂影响的分析、识别和检测需求,中国区域增强系统应开展针对性研究工作.

     

  • 图  1  中国区域电离层网格模型GIVE分布

    注:2013年3月14日 UT 06:02:00.

    图  2  中国区域电离层网格模型GIVE分布

    注:2014年2月28日 UT 14:02:00.

    图  3  RAIM故障检测量T(蓝色)和门限值TD(红色)

    图  4  RAIM故障识别检测量di(蓝色)和检测门限TE(红色)

  • [1] 李跃. 导航与定位[M]. 第2版. 北京: 国防工业出版社, 2008.
    [2] PARKINSON B W, ENGE P K, SPILKER JR J J. Global Positioning System: theory and application[M]. Washington, DC: American Institute of Aeronautics and Astronautics, 1996.
    [3] TEUNISSEN P J G, MONTENBRUCK O. Springer handbook of Global Navigation Satellite Systems[M]. Springer, 2017.
    [4] ENGE P, MISRA P. Global Positioning System signals, measurements, and performance[M]. Ganga-Jamuna Press, 2006.
    [5] DATTA-BARUA S. Ionospheric threats to the integrity of airborne GPS users[D]. Stanford University, 2008.
    [6] WALTER T, ENGE P. Modernizing WAAS[C]//The 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), 2004: 1683-1690.
    [7] PARKINSON B W, AXELRAD P. Autonomous GPS integrity monitoring using the pseudorange residual[J]. Navigation, 1988, 35(2): 255-274. DOI: 10.1002/j.2161-4296.1988.tb00955.x
    [8] FAA Global Navigation Satellite System (GNSS) program office. GNSS Evolutionary Architecture Study, Phase I Panel Report[R]. 2008.
    [9] FAA Global Navigation Satellite System (GNSS) program office. Phase II of the GNSS Evolutionary Architecture Study[R]. 2010.
    [10] GREWAL M, STATE C, HABERDER H. Overview of the WAAS integrity design[C]// ION GPS/GNSS 2003, 2003.
    [11] WALTER T, ENGE P, DECLEENE B. Integrity lessons from the WAAS integrity performance panel (WIPP)[C]//The 2003 National Technical Meeting of the Institute of Navigation, 2003.
    [12] WATT G T, CRUZ C, HABEREDER H L, et al. Proving SBAS integrity through fault tree-based systems engineering[C]// International Technical Meeting of the Satellite Division of the Institute of Navigation, 2003.
    [13] DYKE K V, KOVACH K, KAVRAKAS J, et al. GPS integrity failure modes and effects analysis[C]// The National Technical Meeting of the Institute of Navigation, 2003.
    [14] DYKE K V, KOVACH K, KAVRAKAS J, et al. Status update on GPS integrity failure modes and effects analysis[C]//The National Technical Meeting of the Institute of Navigation, 2004.
    [15] 金碧辉. 系统可靠性工程[M]. 北京: 国防工业出版社, 2004.
    [16] 张金玉, 张炜. 装备智能故障诊断与预测[M]. 北京: 国防工业出版社, 2012.
    [17] SEO J, WALTER T, ENGE P. Availability impact on GPS aviation due to strong ionospheric scintillation[J]. IEEE transactions on aerospace and electronic systems, 2011, 47(3): 1963-1973. DOI: 10.1109/TAES.2011.5937276
    [18] SEO J, WALTER T, ENGE P. Correlation of GPS signal fades due to ionospheric scintillation for aviation applications[J]. Advances in space research, 2011, 47(10): 1777-1788. DOI: 10.1016/j.asr.2010.07.014
    [19] 熊年禄, 唐存琛, 李行健. 电离层物理概论[M]. 武汉: 武汉大学出版社, 1999年.
    [20] CHAO Y C. Real time implementation of the wide area augmentation system for the Global Positioning System with an emphasis on ionospheric modeling[D]. Stanford University, 1997.
    [21] BLANCH J. Using kriging to bound satellite ranging errors due to the ionosphere[D]. Stanford University, 2003.
    [22] 刘钝, 於晓, 陈丽, 等. 赤道电离异常对电离层网格模型实现的影响[C]//第十一届中国卫星导航年会, 2020.
    [23] LIU D, YU X, CHEN L, et al. Analysis of ionospheric grid model performance for China area[C]//China Satellite Navigation Conference (CSNC), 2020. DOI: 10.1007/978-981-15-3711-0_53
    [24] RINO C L. The theory of scintillation with applications in remote sensing[M]. John Wiley, New York, 2011. DOI: 10.1002/9781118010211
    [25] YEH C K, LIU C H. Radio wave scintillations in the ionosphere[J]. IEEE xplore, 1982, 70(4): 324-360. DOI: 10.1109/PROC.1982.12313
    [26] 刘钝, 冯健, 邓忠新, 等. 电离层闪烁对卫星导航系统定位性能的影响分析[J]. 电波科学学报, 2010, 25(4): 702-710.
    [27] WALTER T, HANSEN A, BLANCH J, et al. Robust detection of ionospheric irregularities[J]. Navigation-journal of the institute of navigation, 2001, 48(2): 89-100. DOI: 10.1002/j.2161-4296.2001.tb00231.x
    [28] SPARKS L, BLANCH J, PANDYA N. Estimating ionospheric delay using kriging: 1. methodology[J]. Radio science, 2011, 46(6): 1-13. DOI: 10.1029/2011RS004667
    [29] SPARKS L, BLANCH J, PANDYA N. Estimating ionospheric delay using kriging: 2. impact on satellite-based augmentation system availability[J]. Radio science, 2011, 46(6): RS0D22. DOI: 10.1029/2011RS004781
    [30] ALTSHULER E S, FRIES R M, SPARKS L. The WAAS ionospheric spatial threat model[C]//The 14th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2001), 2001: 2463-2467.
    [31] LIU D, FENG J, CHEN L, et al. A study on construction of ionospheric spatial threat model over China area[C]// China Satellite Navigation Conference, 2017. DOI: 10.1007/978-981-10-4591-2_16
    [32] LIU D, WANG Y, XU N, et al. An ionospheric disturbance index for SBAS based on gradient variation[C]// China Satellite Navigation Conference, 2022.
    [33] LUO M, PULLEN S, DENNIS J, et al. LAAS ionosphere spatial gradient threat model and impact of LGF and airborne monitoring[C]//The 16th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS/GNSS 2003), 2003: 2255-2274.
    [34] LUO M, PULLEN S, ENE A, et al. Ionosphere threat to LAAS: updated model, user impact, and mitigations[C]// The 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), 2004: 2771-2785.
    [35] 龚羽霞, 刘钝. 电离层扰动对局域增强系统的影响分析[J]. 全球定位系统, 2015, 20(2): 67-71. DOI: 10.13442/j.gnss.1008-9268.2015.02.015
    [36] DU C, FANG K, DAN Z Q, et al. Modeling and performance analysis of ionospheric anomaly front velocity for GBAS[C]// The 34th International Technical Meeting of the Satellite Division of The Institute of Navigation, 2021. DOI:10.33012/2021.17876
    [37] 刘钝, 於晓, 陈丽, 等. 电离层闪烁影响下的BDS/GPS接收机定位误差特征[C]//第十届中国卫星导航学术年会, 2019.
    [38] LIU D, DENG Z X, FENG J, et al. A study of ionospheric scintillation effects on differential GNSS[C]//China Satellite Navigation Conference (CSNC), 2012. DOI:10.1007/978-3-642-29187-6_33
    [39] XIE G. Optimal on-airport monitoring of the integrity of gps-based landing systems[D]. Stanford University, 2004.
    [40] 刘钝, 於晓, 许娜, 等. 电离层闪烁对RAIM实现性能的影响分析[C]//第十二届中国卫星导航年会, 2021.
    [41] BLANCH J, WALTER T, ENGE P. Optimal positioning for advanced RAIM[J]. Navigation-journal of the institute of navigation, 2013, 60(4): 279-290. DOI: 10.1002/navi.49
    [42] SPARKS L, KOMJATHY A, MANUCCI A, et al. Extreme ionospheric storms and their impact on WAAS[C]//The Ionospheric Effect Symposium, 2005.
    [43] BROWN R G. A baseline RAIM scheme and a note on the equivalence of three RAIM methods[C]// Proceedings of the 1992 National Technical Meeting of The Institute of Navigation, 1992: 127-138. DOI:10.1002/j.2161-4296.1992.tb02278.x
    [44] BHATTACHARYYA S, GEBRE-EGZIABHER D. Kalman filter-based RAIM for GNSS receivers[J]. IEEE transactions on aerospace and electronics systems, 2015, 51(3): 2444-2459. DOI: 10.1109/TAES.2015.130585
    [45] CHASSAN M, AZAIS J M, BUSCARLET G, et al. Ionosphere magnetic storms occurrence probability[C]//ION GNSS+, 2013.
    [46] BLANCH J, WALTER T, ENGE P. Ionospheric threat model methodology for WAAS[J]. Navigation: journal of the institute of navigation, 2002, 49(2): 103-107. DOI: 10.1002/j.2161-4296.2002.tb00259.x
    [47] BLANCH J, WALTER T, ENGE P. Ionospheric threat model methodology for WAAS[J]. Journal of the institute of avigation, 2002, 49(2). DOI: 10.1002/j.2161-4296.2002.tb00259.x
    [48] LIU D, CHEN L, CHEN L, et al. Ionospheric threat model methodology for China area[C]//China Satellite Navigation Conference (CSNC), 2015. DOI: 10.1007/978-3-662-46635-3_8
    [49] LIU D, CHEN L, YU X, et al. Application of Gaussian over-bounding on ionospheric error analysis for China SBAS[C]// China Satellite Navigation Conference, 2018. DOI: 10.1007/978-981-13-0005-9_52
    [50] BRUCE D. Defining pseudorange integrity – overbounding[C]// The 13th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2000), 2000: 1916-1924.
    [51] SCHEMPP T R, TRAUTMAN L J. WAAS error bounding during ionospheric storms[C]//The 2003 National Technical Meeting of The Institute of Navigation, 2003: 175-182.
    [52] LIU D, CHEN L, YU X, et al. Analysis on Characteristics of delay errors under ionospheric anomaly in China area[C]//China Satellite Navigation Conference (CSNC), 2018: 649-661. DOI: 10.1007/978-981-13-0005-9_53
  • 加载中
图(4)
计量
  • 文章访问数:  520
  • HTML全文浏览量:  122
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-12
  • 录用日期:  2022-11-12
  • 网络出版日期:  2023-02-07

目录

    /

    返回文章
    返回