Evaluation and analysis of satellite data of the BDS-3 system based on provincial regional ground-based augmentation system
-
摘要: 导航卫星观测数据质量是影响地面增强系统定位精度的直接因素,北斗地基增强系统经过北斗三号全球卫星导航系统(BDS-3)适配性改造后能够获取的卫星观测值数量相较北斗二号卫星导航系统(BDS-2)适配改造提升了30%~50%,对这些观测数据的质量评估和分析尤为重要. 本文利用数据完整率、多路径误差等基准站观测值质量评估方法,使用零基线测试和精密单点定位(PPP)测试两种方法,提出一种综合区域地基增强系统的BDS-3数据分析方法. 对研究区域进行实证试验,结果表明:BDS-3卫星在亚太地区的数据质量已经与GPS相当;由于BDS-3卫星空间分布结构更优,地面测站可以获得的高仰角(高度角>50°)可用观测值较单GPS提升了200%以上 .
-
关键词:
- 北斗三号全球卫星导航系统(BDS-3) /
- 全球卫星导航系统(GNSS) /
- 数据完整性 /
- 多路径误差 /
- 零基线测试 /
- 精密单点定位(PPP)
Abstract: The quality of navigation satellite observation data is a direct factor that affects the positioning accuracy of ground augmentation system. The number of satellite observations obtained by BeiDou ground-based augmentation system after the adaptive transformation of Beidou-3 Navigation Satellite System (BDS-3) has increased by 30%−50% compared with the original Beidou-2 Navigation Satellite System (BDS-2). It is very important to evaluate and analyze the quality of these observations. In this paper, we propose a method to evaluate the quality of observation values of reference stations, such as analytical data integrity and multipath error, and use two methods such as zero-base line test and precise single point positioning test, to integrate the BDS-3 data analysis method of regional ground augmentation system. Based on this method, an empirical test was conducted in the study area. The results show that the data quality of BDS-3 satellites in the Asia-Pacific region has reached the same level as that of GPS. Due to the better spatial distribution structure of BDS-3 satellites, the available observation value of high elevation angle (altitude angle >50°) obtained by the ground stations has increased more than 200% compared with that of single GPS system. -
表 1 PPP数据处理策略
采样间隔 30 s 定位模式 静态 剔除卫星 无 降低权重卫星编号 C01 C02 C03 C04 C05 C18 C59 C60 C61 星历 WUM0MGXRAP 高阶电离层改正 否 对流层映射函数 GMF 天顶对流层估计方法 STO(random walk) 对流层水平梯度估计方法 PWC(720 min) 模糊度截止高度角 15° MW组合上PCO改正 是 伪距噪声 0.3 m 相位噪声 0.01周 tides改正 固体潮改正、海潮负荷、地球极移 预处理截止高度角 7° 先验坐标约束 X(10 m),Y(10 m),Z(10 m) 表 2 每小时可同步观测卫星数量统计
站点名 GPS GLONASS BDS Galileo CD 9 8 23 5 JF 7 5 20 5 MC 8 6 21 5 平均值 7.7 5.8 5.5 22.2 表 3 各接收机卫星系统接收情况统计
接收
机建设
时间可接收卫星系统 GPS GLONASS Galileo BDS-2 BDS-3 QZSS A 2016 支持 支持 不支持 支持 不支持 不支持 B 2020 支持 支持 支持 支持 支持 不支持 C 2021 支持 支持 支持 支持 支持 支持 表 4 接收机数据完整率统计
站点 接收机 HAV>10° EXP>10° ratio/% CD A 84 725 108 392 78.17 B 111 432 126 502 88.09 C 139 096 153 814 90.43 JF A 75 168 108 307 69.40 B 90 627 136 370 66.46 C 113 551 152 625 74.40 MC A 37 010 43 128 85.81 B 91 435 132 694 68.91 C 117 122 152 136 76.99 表 5 各品牌接收机各频点多路径误差结果
mm 系统 频点 CD JF MC A B C A B C A B C GPS 1 36.60 31.80 21.20 56.00 45.60 35.60 61.50 70.30 54.60 2 40.60 28.60 34.00 64.30 36.80 43.80 70.30 57.60 64.70 5 44.60 28.70 33.30 81.60 41.60 46.30 - 57.20 58.80 BDS 1 - - 60.10 - - 91.40 - - 126.40 2 33.10 24.60 20.80 40.20 37.20 31.30 - 61.60 51.50 5 - 31.00 62.20 - 45.00 81.80 - 65.50 127.50 6 28.90 19.90 30.10 - 25.80 38.50 - 42.30 63.60 7 29.80 22.00 12.70 34.60 28.20 17.40 - 44.30 29.10 均值 35.60 26.66 34.30 55.34 37.17 48.26 65.90 56.97 72.03 -
[1] 唐晓霏, 孙小超, 陈豪, 等. 省级北斗地基增强系统建设与应用探讨: 卫星导航定位与北斗系统应用2018—深化北斗应用促进产业发展[M]. 北京, 测绘出版社, 2018. [2] 滕月昊, 贾小林, 雷盼荣, 等. iGMAS多品牌监测接收机数据质量分析[J]. 全球定位系统, 2022, 47(1): 59-67. DOI: 10.12265/j.gnss.2021083104 [3] 周星宇, 陈华, 安向东. 伽利略卫星导航系统信号质量及定位性能分析[J]. 全球定位系统, 2018, 43(1): 19-24. DOI: 10.13442/j.gnss.1008-9268.2018.01.004 [4] 高晓, 戴吾蛟, 李施佳. 高精度GPS/BDS兼容接收机内部噪声检测方法研究[J]. 武汉大学学报(信息科学版), 2015, 40(6): 795-799. [5] RESCH G, JACOBS C, KEIHM S, et al. Calibration of atmospherically induced delay fluctuations due to water vapor[C]//International VLBI Service for Geodesy and Astrometry 2000 General Meeting Proceedings, Ktzting, Germany, 2000: 274-279. [6] BRAASCH M. Isolation of GPS multipath and receiver tracking errors[J]. Navigation, 1994, 41(4): 415-435. DOI: 10.1002/navi.1994.41.issue-4 [7] 毛刚, 莫钧. 高精度BD2/GPS兼容接收机性能测试与分析[C]//第一届中国卫星导航学术年会, 北京, 2010. [8] 张文峰, 胡玉坤. BDS/GPS兼容接收机噪声检测方法研究[J]. 测绘地理信息, 2019, 44(3): 77-80. DOI: 10.14188/j.2095-6045.2017303 [9] 全球定位系统(GPS)测量型接收机检定规程: CH 8016-1995[S]. 北京: 国家测绘局: 1995. [10] ZUMBERGE J F, HEFLIN M B, JEFFERSON D C, et all. Precise point positioning for the efficient and robust analysis of GPS data from large networks[J]. Journal of geophysical research, 1997, 102(B3): 5005-5017. DOI: 10.1029/96JB03860 [11] WÜBBENA G, SCHMITZ M, BAGGE A. PPP-RTK: precise point positioning using state-space representation in RTK networks [C]//The 18th International Technical Meeting of the Satelite Divesion of the Institute of Navigation, 2005. [12] KOUBA J, HÉROUX P. Precise point positioning using IGS orbit and clock products[J]. GPS solutions, 2015, 5(2): 12-28. DOI: 10.1007/PL00012883 [13] BISNATH S, GAO Y. Current state of precise point positioning and future prospects and limitations[M]. Berlin, Heidelberg: Springer, 2009. [14] PRIDE PPP-AR II 用户手册[Z]. 武汉大学卫星导航定位技术研究中心, 2022. [15] Geng J, Teferle F N, Shi C, et al. Ambiguity resolution in precise point positioning with hourly data[J]. GPS solute, 2009, 13(4): 263-270. DOI: 10.1007/s10291-009-0119-2 [16] 易文婷, 陈亮, 郭海林, 等. 一种新的非差FCBs估计方法[J]. 测绘地理信息, 2015, 40(3): 43-44. DOI: 10.14188/j.2095-6045.2015.03.011 [17] GENG J H, SHI C. Rapid Initialization of real-time PPP by resolving undifferenced GPS and GLONASS ambiguities simultaneously[J]. Journal of geodesy, 2016, 91(4): 361-374. DOI: 10.1007/s00190-016-0969-7