Comparison and analysis of GNSS precision point positioning performance based on DCB and OSB products
-
摘要: 随着全球卫星导航系统(GNSS)的不断建设,精密单点定位(PPP)可用频率和通道逐步多元化. 文中在原始观测方程的基础上,分别推导出适用于差分码偏差(DCB)产品和绝对偏差(OSB)产品的双频无电离层组合(IF)PPP模型,并利用50个MGEX (Multi-GNSS Experiment)测站的10 d连续观测数据对两种策略对比分析了各GNSS系统PPP模型的定位性能. 结果表明:采用OSB产品的PPP模型在性能上与传统的DCB产品差异可以忽略不计,而且OSB产品在使用时更便利,更适合未来多频PPP的应用前景.Abstract: With the development of the Global Navigation Satellite System (GNSS), the channels and frequencies used for precision point positioning (PPP) are gradually diversified. Therefore, based on the original observation equations, this study derived the dual-frequency ionosphere-free (IF) PPP model for differential code bias (DCB) and observable-specific signal bias (OSB) products, respectively, and used 10-day continuous observation data collected from 50 Multi-GNSS Experiment (MGEX) stations to analyze the performance of the PPP model for each GNSS system. The results show that the performance of PPP model using the OSB product is consistent with that of the conventional DCB product, and the OSB product is more convenient to use and has more applications in future multi-frequency PPP.
-
表 1 实验处理策略
项目 改正模型或处理策略 PPP模型 双频IF组合模型 观测值 GPS: L1/L2; GLONASS: G1/G2; Galileo: E1/E5a; BDS: B1I/B3I 采样间隔 30 s 卫星截止高度角 10° 精密星历 GBM产品 卫星伪距硬件延迟改正 采用CAS发布的后缀名为DCB和OSB的文件 卫星或接收机天线改正 igs14.atx文件 地球自转 模型改正 相对论效应 模型改正 天线相位缠绕 模型改正 地球潮汐 模型改正 地球自转 模型改正 测站位置 静态PPP采用常数估计 接收机钟差 采用白噪声估计 对流层延迟 干延迟采用萨斯塔莫宁模型计算;传播路径上的湿延迟投影至U方向作为参数进行随机游走估计 模糊度 采用常数估计 表 2 不同产品方案下三维定位RMSE值和收敛时间统计表
系统 RMSE/cm E N U 收敛时间/min DCB OSB DCB OSB DCB OSB DCB OSB GPS 0.94 0.92 0.65 0.63 1.54 1.57 16.33 15.50 GLONASS 1.22 1.24 0.89 0.92 1.81 1.85 37.73 38.08 Galileo 1.52 1.52 0.92 0.92 2.19 2.19 24.80 24.80 BDS 1.53 1.53 0.98 0.98 2.50 2.50 23.10 23.10 -
[1] YANG Y X, LI J L, XU J Y, et al. Contribution of the compass satellite navigation system to global PNT users[J]. Chinese science bulletin, 2011, 56(26): 2813-2819. DOI: 10.1007/S11434-011-4627-4 [2] 朱少林, 岳东杰, 何丽娜, 等. BDS-2/BDS-3融合三频精密单点定位模型及偏差特性分析[J/OL]. (2021-11-05)[2022-04-22]. 武汉大学学报(信息科学版), 2021(11): 1-15. [3] WU Z Y, WANG Q X, YU Z H, et al. Modeling and performance assessment of precise point positioning with multi-frequency GNSS signals[J]. Measurement, 2022, 201(30): 111687. [4] WANG N B, YUAN Y B, LI Z S, et al. Determination of differential code biases with multi-GNSS observations[J]. Journal of geodesy, 2015, 90(3): 209-228. DOI: 10.1007/s00190-015-0867-4 [5] WU Z Y, WANG Q X, HU C, et al. Modeling and assessment of five-frequency BDS precise point positioning[J]. Satellite navigation, 2022, 3(1): 114-127,10004. DOI: 10.1186/S43020-022-00069-Z [6] SCHARE S. SINEX BIAS-Solution (Software/technique) Independent exchange format for GNSS biases version 1.00[S]. IGS Workshop on GNSS biases, Bern, Switzerland, 2016. https://files.igs.org/pub/data/format/sinex_bias_100.pdf [7] ALFRED L, LEV R, DMITRY T. GPS Satellite Surveying[M]. 4th Edition. 2015. [8] 魏子卿, 刘光明, 吴富梅. 2000中国大地坐标系: 中国大陆速度场[J]. 测绘学报, 2011, 40(4): 403-410. [9] HU C, WANG Q X, WU Z Y, et al. A mixed multi-frequency precise point positioning strategy based on the combination of BDS-3 and GNSS multi-frequency observations[J]. Measurement science and technology, 2022, 34(2): 25008. DOI: 10.1088/1361-6501/ac9a62 [10] LIU G, GUO F, WANG J, et al. Triple-frequency GPS un-differenced and uncombined PPP ambiguity resolution using observable-specific satellite signal biases[J]. Remote sensing, 2020, 12(14): 2310. DOI: 10.3390/rs12142310 [11] 李昕. 多频率多星座GNSS快速精密定位关键技术研究[D]. 武汉: 武汉大学, 2021. [12] 吴志远, 王潜心, 胡超, 等. BDS-3多频PPP模型性能分析[J]. 大地测量与地球动力学, 2022, 42(8): 846-851. DOI: 10.14075/j.jgg.2022.08.014