Analysis of atmospheric error correction in satellite-ground time comparison and its influencing factors
-
摘要: 由于空间环境较为复杂,大气对无线电微波信号的影响是星地高精度时间比对的主要误差源之一. 针对星地高精度时间比对的需求,研究了双向测量体制下的电离层误差修正方法及对流层色散延迟修正方法,对影响大气误差修正的主要因素展开了讨论,并对不同场景下大气误差修正情况及星地时间比对结果进行了仿真分析. 仿真结果表明:当卫星姿态误差控制在100 as以内、相位中心标定误差控制在5 mm以内、精密定轨误差控制在30 cm以内时,通过相应的误差修正算法修正后,电离层误差残差的RMS值小于0.006 ps,对流层误差残差的RMS值小于0.06 ps,星地时间比对精度优于皮秒量级.Abstract: Due to the complex space environment, the influence of the atmosphere on the radio and microwave signals is one of the main error sources for the high-precision satellite-to-earth two-way time matching. In order to meet the requirements of the satellite-ground time comparison, the ionospheric error correction method and dispersive troposphere delays correction method in the triple-frequency system are studied, the main factors affecting the atmospheric error correction are discussed, and the atmospheric error correction and the satellite-ground time comparison results under different scenarios are simulated and analyzed. The simulation results show that when the satellite attitude error is controlled within 100 as, the phase center calibration error is controlled within 5 mm, and the orbit position error is controlled within 30 cm.The root mean square (RMS) of ionospheric and tropospheric error residual are less than 0.006 ps and 0.06 ps respectively after correction, and the accuracy of star-ground time comparison is better than ps level.
-
表 1 不同姿态误差下的星地时间比对精度
姿态
误差/as相位中心标定
误差/mm精密定轨
误差/cm时间比对
精度/ps50 1 10 0.214 26 60 1 10 0.213 45 70 1 10 0.212 17 80 1 10 0.212 25 90 1 10 0.213 22 100 1 10 0.213 06 表 2 不同相位中心标定误差下的星地时间比对精度
姿态
误差/as相位中心标定
误差/mm精密定轨
误差/cm时间比对
精度/ps72 0.5 10 0.201 60 72 1.0 10 0.213 39 72 1.5 10 0.238 42 72 2.0 10 0.269 14 72 3.0 10 0.339 73 72 5.0 10 0.508 59 表 3 不同轨道位置误差下的星地时间比对精度
姿态
误差/as相位中心标定
误差/mm精密定轨
误差/cm噪声
误差/cm时间比对
精度/ps72 1.0 2 0.2 0.216 21 72 1.0 5 0.2 0.211 95 72 1.0 10 0.2 0.214 02 72 1.0 15 0.2 0.217 54 72 1.0 20 0.2 0.217 01 72 1.0 30 0.2 0.214 29 72 1.0 30 2.0 1.946 36 -
[1] CACCIAPUOTI L, DIMARCQ N, SANTARELLI G, et al. Atomic clock ensemble in space: scientific objectives and mission status[J]. Nuclear physics B - proceedings supplements, 2007(166): 303-306. DOI: 10.1016/j.nuclphysbps.2006.12.033 [2] CACCIAPUOTI L, SALOMON CH. Space clocks and fundamental tests: the ACES experiment[J]. The european physical journal special topics, 2009, 172(1): 57-68. DOI: 10.1140/epjst/e2009-01041-7 [3] 杨文可, 孟文东, 韩文标, 等. 欧洲空间原子钟组ACES与超高精度时频传递技术新进展[J]. 天文学进展, 2016, 34(2): 221-237. [4] MENG W, ZHANG H F, HUANG P C, et al. Design and experiment of onboard laser time transfer in Chinese BeiDou navigation satellites[J]. Advances in space research, 2013, 51(6): 951-958. DOI: 10.1016/j.asr.2012.08.007 [5] 李树洲. 卫星导航定位系统星地时间同步方法[J]. 无线电工程, 2002(10): 60-63. DOI: 10.3969/j.issn.1003-3106.2002.10.016 [6] 刘晓刚, 叶修松, 吴星, 等. 下行L波段轨道法时间比对计算模型及其精度评估[J]. 海洋测绘, 2009, 29(3): 4-6. DOI: 10.3969/j.issn.1671-3044.2009.03.002 [7] 刘利, 韩春好, 朱陵凤, 等. 基于伪距测量的钟差计算模型[J]. 时间频率学报, 2009, 32(1): 36-42. DOI: 10.3969/j.issn.1674-0637.2009.01.007 [8] 杨俊, 黄文德, 陈建云, 等. 卫星导航系统建模与仿真[M]. 北京: 科学出版社, 2016. [9] 谭勇, 姚宜斌. 常用对流层延迟修正模型的适用性分析及精化[J]. 测绘科学, 2022, 47(6): 15-20. [10] HOBIGER T, PIESTER D, BARON P. A correction model of dispersive troposphere delays for the ACES microwave link: ACES dispersive troposphere delay model[J]. Radio science, 2013, 48(2): 131-142. DOI: 10.1002/rds.20016 [11] HOBIGER T, ICHIKAWA R, KOYAMA Y, et al. Fast and accurate ray-tracing algorithms for real-time space geodetic applications using numerical weather models[J]. Journal of geophysical research, 2008, 113(D20): D20302. DOI: 10.1029/2008JD010503