GNSS spoofing signal parameters estimation based on Newton’s method
-
摘要: 欺骗干扰是全球卫星导航系统(GNSS)发展面临的重要挑战,针对小时延场景下欺骗干扰参数估计方法计算量大的问题,提出了一种基于牛顿迭代法的参数估计方法. 该方法以码相位估计为核心,通过构建欺骗场景下信号参数的非线性估计模型,采用牛顿迭代法对信号码相位进行估计,在此基础上采用最小二乘法对信号幅度和载波相位进行估计. 实验结果表明:该方法的平均迭代次数在10次左右,相比于传统参数估计方法,算法有效性大幅提升. 在准确性方面,该方法能够有效提高小时延场景下的信号参数估计精度.
-
关键词:
- 全球卫星导航系统(GNSS) /
- 欺骗干扰 /
- 参数估计 /
- 牛顿迭代法 /
- 最大似然估计(MLE)
Abstract: Spoofing interference is a major threat to the development of Global Navigation Satellite System (GNSS) applications. In order to solve the large computation resource consumption problem of estimation methods, this paper proposed a spoofing signal parameters estimation method based on Newton’s method. This method constructed a nonlinear estimation model of signal parameters in the spoofing scenario, taking the estimation of code phases as the core. The code phases were iterated by Newton’s method, and the signal amplitudes and carrier phases were estimated by the least square method. The simulation results showed that the average number of iterations was about 10, greatly improving the effectiveness of signal parameters estimation compared with the traditional estimation method. Moreover, this method could also improve the estimation accuracy in the small delay scenarios. -
[1] JAFARNIA-JAHROMI A, BROUMANDAN A, NIELSEN J, et al. GPS vulnerability to spoofing threats and a review of anti-spoofing techniques[J]. International journal of navigation and observation, 2012(9): 1-16. DOI: 10.1155/2012/127072 [2] JAHROMI J. A GNSS signal authenticity verification in the presence of structural interference [D]. Calgary: University of Calgary, 2013. [3] MA C, YANG J, CHEN J Y, et al. Effects of a navigation spoofing signal on a receiver loop and a UAV spoofing approach[J]. GPS solutions, 2020, 24(3): 1-13. DOI: 10.1007/s10291-020-00986-z [4] PSIAKI M L, HUMPHREYS T E. GNSS spoofing and detection[J]. Proceedings of the IEEE, 2016, 104(6): 1258-1270. DOI: 10.1109/JPROC.2016.2526658 [5] SHEPARD D P, HUMPHREYS T E. Characterization of receiver response to a spoofing attacks[C]//The 24th International Technical Meeting of the Satellite Division of the Institute of Navigation, 2011: 2608-2618. [6] BHATTI J, HUMPHREYS T E. Hostile control of ships via false GPS signals: demonstration and detection[J]. NAVIGATION: Journal of the institute of navigation, 2017, 64(1): 51-66. DOI: 10.1002/navi.183 [7] 徐成涛. 基于统计模型的多径误差评估和现代导航信号多径抑制技术研究[D]. 长沙: 国防科学技术大学, 2016. [8] BLANCO-DELGADO N, NUNES F D. Multipath estimation in multicorrelator GNSS receivers using the maximum likelihood principle[J]. IEEE transactions on aerospace and electronic systems, 2012, 48(4): 3222-3233. DOI: 10.1109/TAES.2012.6324696 [9] SHANG X Y, SUN F P, ZHANG L D, et al. Detection and mitigation of GNSS spoofing via the pseudorange difference between epochs in a multicorrelator receiver[J]. GPS solutions, 2022, 26(2): 1-14. DOI: 10.1007/s10291-022-01224-4 [10] VAN NEE R D J. The multipath estimating delay lock loop[C]// IEEE Second Symposium on Spread Spectrum Techniques and Applications, 1992: 39-42. DOI: 10.1109/ISSSTA.1992.665623 [11] 叶锦宇, 寇艳红. 基于MEDLL的分级搜索抗多径算法[J]. 北京航空航天大学学报, 2016, 42(6): 1228-1235. [12] 王佳奇, 孙广富, 唐小妹, 等. 基于NELDER-MEAD的GNSS欺骗干扰参数估计方法[J/OL]. (2022-08-04) [2022-09-22]. http://kns.cnki.net/kcms/detail/11.2406.TN.20220803.1653.010.html [13] GROSS J N, KILIC C, HUMPHREYS T E. Maximum-likelihood power-distortion monitoring for GNSS-signal authentication[J]. IEEE transactions on aerospace and electronic systems, 2019, 55(1): 469-475. DOI: 10.1109/TAES.2018.2848318