留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高阶电离层在GNSS对流层参数估计的影响

魏僮 阎卫东 马健

魏僮, 阎卫东, 马健. 高阶电离层在GNSS对流层参数估计的影响[J]. 全球定位系统, 2023, 48(1): 83-97. doi: 10.12265/j.gnss.2022157
引用本文: 魏僮, 阎卫东, 马健. 高阶电离层在GNSS对流层参数估计的影响[J]. 全球定位系统, 2023, 48(1): 83-97. doi: 10.12265/j.gnss.2022157
WEI Tong, YAN Weidong, MA Jian. The effects of higher order ionosphere on GNSS tropospheric parameters estimation[J]. GNSS World of China, 2023, 48(1): 83-97. doi: 10.12265/j.gnss.2022157
Citation: WEI Tong, YAN Weidong, MA Jian. The effects of higher order ionosphere on GNSS tropospheric parameters estimation[J]. GNSS World of China, 2023, 48(1): 83-97. doi: 10.12265/j.gnss.2022157

高阶电离层在GNSS对流层参数估计的影响

doi: 10.12265/j.gnss.2022157
详细信息
    作者简介:

    魏僮:(1997—),女,硕士,研究方向为卫星导航定位方法与技术

    阎卫东:(1963—),男,博士,教授,研究方向为卫星导航定位方法与技术

    马健:(1988—),男,博士,研究方向为卫星导航定位方法与技术

    通信作者:

    马 健 E-mail: majian88@sjzu.edu.cn

  • 中图分类号: P228.1;P228.9

The effects of higher order ionosphere on GNSS tropospheric parameters estimation

  • 摘要: 为了研究高阶电离层在全球卫星导航系统(GNSS)对流层参数估计中的影响. 在太阳活动平静期和活跃期,分别选择亚太地区的8个MGEX (Multi-GNSS Experiment)跟踪站. 通过GAMIT10.71分析了高阶电离层延迟在北斗二号(BDS-2)、北斗三号(BDS-3)、GPS、GLONASS和Galileo对流层参数估计的影响. 实验结果表明:太阳活动平静期,高阶电离层延迟对于Galileo的对流层天顶总延迟(ZTD)、可降水量(PW)和南北梯度(${{NS}}_{\text{grad}}$)影响最大分别达到7.70 mm、1.26 mm和6.77 mm;高阶电离层延迟对于GLONASS的对流层东西梯度(${{EW}}_{\text{grad}}$)影响最大达到9.30 mm. 太阳活动活跃期,高阶电离层在GNSS对流层参数估计中产生了更大影响. 其中,高阶电离层延迟对于BDS-2的ZTD和PW影响最大分别达到21.30 mm和3.49 mm;高阶电离层延迟对于Galileo的对流层${{NS}}_{\text{grad}}$影响最大达到19.87 mm;高阶电离层延迟对于GLONASS的对流层${{EW}}_{\text{grad}}$影响最大达到了21.21 mm. 实验结果进一步表明:高阶电离层在GNSS对流层PW估计的影响较小;ZTD、${{NS}}_{\text{grad}}$${{EW}}_{\text{grad}}$影响则较大. 高阶电离层延迟对于BDS-3和GPS对流层参数估计影响较小;Galileo、BDS-2和GLONASS影响则较大.

     

  • 图  1  MGEX跟踪站分布图

    图  2  2022年高阶电离层延迟在GNSS对流层ZTD估计的影响

    图  3  2022年高阶电离层延迟在GNSS对流层PW估计的影响

    图  4  2022年高阶电离层延迟在GNSS对流层NSgrad估计的影响

    图  5  2022年高阶电离层延迟在GNSS对流层EWgrad估计的影响

    图  6  2022年高阶电离层延迟在GNSS ZTD估计的影响

    图  7  2022年高阶电离层延迟在GNSS PW估计的影响

    图  8  2022年高阶电离层延迟在GNSS对流层NSgrad估计的影响

    图  9  2022年高阶电离层延迟在GNSS对流层EWgrad估计的影响

    表  1  GAMIT10. 71基线解算策略和配置文件

    参数解算方式文件名称文件内容
    观测值类型LC_AUTCLNantmod. dat接收机天线信息
    解算策略BASELINEatml. grid全球大气负荷参数格网模型
    观测量LC_AUTCLNdcb. dat接收机码间偏差
    迭代方案1-ITERgdetic. dat地球形状参数
    高度截止角10°leap. sec跳秒表
    采样间隔30 sluntab.月球星历文件
    卫星钟差
    模型
    精密星历误差的钟差参数map. grid全球大气映射函数模型
    对流层模型SAAS模型nutabl.章动
    对流层参数输出间隔1 hrcvant. dat接收机及天线型号对照表
    光压模型ECOMC模型otl. grid全球海潮模型
    天体延迟
    参数
    13otlcmc. dat海洋潮汐负荷
    改正
    梯度参数2pole. usno极移
    先验坐标所属框架ITRF2014sestbl.解算参数控制
    惯性框架J2000svnva. dat卫星星号对照
    测站约束0.02 m/0.02 m/0.02 mprocess. defaults处理控制
    下载: 导出CSV

    表  2  太阳活动平静期状况

    日期射电流量
    10.7 cm
    太阳黑子数X射线背景耀斑质子流量(GOES13)
    大于10 MeV Protons /
    (cm2-day-sr)
    电子流量(GOES13)
    大于2 MeV Electrons /
    (cm2-day-sr)
    地磁Ap指数
    X射线耀斑光学耀斑
    CMXS123
    2022-02-27 9748B1.510010004.30×1045.30×10613
    2022-02-28 9965B1.730020004.30×1041.80×1068
    2022-03-01 9962B2.200020004.30×1042.70×1068
    2022-03-0211066B3.771051004.30×1043.10×1064
    2022-03-0311192B3.230010004.30×1045.50×1065
    下载: 导出CSV

    表  3  ZTD差值绝对值的Mean和RMS m

    MGEX跟踪站BDS-2BDS-3GPSGLONASSGalileo
    MeanRMSMeanRMSMeanRMSMeanRMSMeanRMS
    CKSV0.270.450.200.310.230.430.160.350.300.40
    GAMG0.170.240.140.200.100.140.090.120.120.19
    IITK0.410.810.270.450.960.190.130.190.310.81
    JFNG0.250.330.160.221.200.130.110.150.190.30
    MIZU0.160.200.190.281.210.140.140.290.150.23
    PTGG0.461.030.230.381.040.200.310.580.270.39
    ULAB0.220.550.130.201.170.150.100.130.140.21
    URUM0.270.610.170.241.020.100.110.140.210.57
    下载: 导出CSV

    表  4  PW差值绝对值的Mean和RMS m

    MGEX跟踪站BDS-2BDS-3GPSGLONASSGalileo
    MeanRMSMeanRMSMeanRMSMeanRMSMeanRMS
    CKSV0.040.070.030.050.040.070.030.060.050.06
    GAMG0.030.040.020.030.020.020.010.020.020.03
    IITK0.070.130.040.070.030.040.020.030.050.13
    JFNG0.040.050.020.030.020.030.020.020.030.05
    MIZU0.020.030.030.040.020.030.020.500.020.04
    PTGG0.080.170.040.060.030.050.050.100.040.07
    ULAB0.030.080.020.030.020.040.010.020.020.03
    URUM0.040.090.030.040.020.020.020.020.030.09
    下载: 导出CSV

    表  5  NSgrad差值绝对值的Mean和RMS m

    MGEX跟踪站BDS-2BDS-3GPSGLONASSGalileo
    MeanRMSMeanRMSMeanRMSMeanRMSMeanRMS
    CKSV0.740.950.711.070.160.220.230.440.690.84
    GAMG0.360.460.170.300.230.310.140.230.230.35
    IITK0.530.770.591.240.170.260.240.371.202.03
    JFNG0.430.500.400.590.200.250.310.510.280.36
    MIZU0.330.420.200.350.320.550.130.200.390.63
    PTGG1.161.770.891.270.510.650.891.541.441.90
    ULAB0.380.820.310.490.380.660.040.060.420.74
    URUM0.340.490.220.370.100.140.150.200.641.36
    下载: 导出CSV

    表  6  EWgrad差值绝对值的Mean和RMS m

    MGEX跟踪站BDS-2BDS-3GPSGLONASSGalileo
    MeanRMSMeanRMSMeanRMSMeanRMSMeanRMS
    CKSV1.041.510.671.560.861.500.360.680.961.43
    GAMG0.330.530.220.410.210.270.170.240.220.27
    IITK0.510.740.681.470.270.410.180.340.420.56
    JFNG0.601.020.120.220.180.230.210.270.561.06
    MIZU0.420.570.540.900.500.630.390.530.280.31
    PTGG0.670.980.460.700.370.471.002.440.881.49
    ULAB0.300.390.230.390.210.340.120.160.220.31
    URUM0.280.390.270.410.120.160.160.190.300.41
    下载: 导出CSV

    表  7  太阳活动活跃期情况

    日期射电流量
    10.7 cm
    太阳黑子数X射线背景耀斑质子流量(GOES13)
    大于10 MeV Protons /
    (cm2-day-sr)
    电子流量(GOES13)
    大于2 MeV Electrons /
    (cm2-day-sr)
    地磁Ap指数
    X射线耀斑光学耀斑
    CMXS123
    2022-04-22163101B8.072020104.00×1049.00×1067
    2022-04-23160118B8.180050003.90×1041.10×10713
    2022-04-24159112B7.630020003.80×1048.90×1065
    2022-04-25157 94B8.082070003.80×1041.20×1075
    2022-04-26150126B9.470030003.80×1041.40×1073
    下载: 导出CSV

    表  8  ZTD差值绝对值的Mean和RMS m

    MGEX跟踪站BDS-2BDS-3GPSGLONASSGalileo
    MeanRMSMeanRMSMeanRMSMeanRMSMeanRMS
    CKSV1.673.230.640.940.510.880.881.450.911.20
    GAMG0.600.820.510.690.250.320.350.530.540.89
    IITK0.901.180.591.030.380.540.400.590.871.71
    JFNG0.871.140.520.670.480.720.490.720.711.12
    MIZU0.540.670.801.090.240.300.290.390.650.92
    PTGG1.933.080.831.460.580.840.360.490.811.35
    ULAB0.720.900.460.590.290.370.310.430.620.88
    URUM0.831.080.380.540.240.320.240.310.651.05
    下载: 导出CSV

    表  9  PW差值绝对值的Mean和RMS m

    MGEX跟踪站BDS-2BDS-3GPSGLONASSGalileo
    MeanRMSMeanRMSMeanRMSMeanRMSMeanRMS
    CKSV0.270.530.100.150.080.140.140.240.150.20
    GAMG0.090.130.080.110.040.050.060.080.080.14
    IITK0.150.200.100.170.060.090.070.100.150.29
    JFNG0.140.190.080.110.080.120.800.120.110.18
    MIZU0.090.110.130.170.040.050.050.060.100.15
    PTGG0.320.510.130.240.100.140.060.080.130.22
    ULAB0.110.140.070.090.040.060.050.070.100.14
    URUM0.130.170.060.090.040.050.040.050.100.17
    下载: 导出CSV

    表  10  NSgrad差值绝对值的Mean和RMS m

    MGEX跟踪站BDS-2BDS-3GPSGLONASSGalileo
    MeanRMSMeanRMSMeanRMSMeanRMSMeanRMS
    CKSV2.573.891.291.801.351.711.793.212.573.69
    GAMG1.461.910.680.850.290.380.741.110.781.07
    IITK2.913.471.211.440.861.150.751.002.995.46
    JFNG1.431.730.971.160.931.191.151.602.523.36
    MIZU1.051.391.933.070.310.440.620.910.911.26
    PTGG5.547.252.583.031.932.561.402.421.802.60
    ULAB2.423.270.690.940.420.520.410.552.302.90
    URUM2.843.810.650.890.260.340.310.470.921,81
    下载: 导出CSV

    表  11  EWgrad差值绝对值的Mean和RMS m

    MGEX跟踪站BDS-2BDS-3GPSGLONASSGalileo
    MeanRMSMeanRMSMeanRMSMeanRMSMeanRMS
    CKSV1.541.872.192.840.871.123.847.622.463.17
    GAMG2.473.791.051.600.400.520.520.650.770.98
    IITK3.363.902.293.170.730.880.510.572.525.07
    JFNG6.359.311.322.100.851.000.721.323.575.70
    MIZU1.722.581.893.400.790.990.680.882.733.89
    PTGG6.608.392.233.021.993.660.941.562.954.03
    ULAB2.723.490.941.310.530.710.400.581.261.48
    URUM3.794.430.871.090.320.360.190.231.142.09
    下载: 导出CSV
  • [1] TREGONING P, BOERS R, O’BRIEN D, et al. Accuracy of absolute precipitable water vapor estimates from GPS observations[J]. Journal of geophysical research atmospheres, 1998, 103(D22): 28701-28710. DOI: 10.1029/98JD02516
    [2] BÖHM J, NIELL A E, TREGONING P, et al. Global mapping function(GMF): a new empirical mapping function based on numerical weather model data[J]. Geophysical research letters, 2006, 33(7): 304-316. DOI: 10.1029/2005GL025546
    [3] SAASTAMOINEN J. Contributions to the theory of atmospheric refraction[J]. Bulletin géodésique, 1972, 46(3): 279-298. DOI: 10.1007/BF02521844
    [4] HOPFIELD H S. Tropospheric effect on electromagnetically measured range: prediction from surface weather data[J]. Radio science, 1971, 6(3): 357-367. DOI: 10.1029/RS006i003p00357
    [5] KLOBUCHAR J A. Ionospheric effects on GPS[J]. American institute of aeronautics and astronautics, 1996(1): 485-515. DOI: 10.2514/5.9781600866388.0485.0515
    [6] HOQUE M M, JAKOWSKI N. Estimate of higher order ionospheric errors in GNSS positioning[J]. Radio science, 2008, 43(5): 68-82. DOI: 10.1029/2007rs003817
    [7] ELMAS Z G, AQUNINO M, MARQUES H A, et al. Higher order ionospheric effects in GNSS positioning in the european region[J]. Annales geophysicae, 2011, 29(8): 1383-1399. DOI: 10.5194/angeo-29-1383-2011
    [8] WANG Z M, WU Y, ZHANG K F, et al. Triple-frequency method for high-order ionospheric refractive error modelling in GPS modernization[J/OL]. [2022-08-20]. Journal of global positioning systems, 2005, 4(1-2): 291-295. https://www.scirp.org/journal/PaperInformation.aspx?paperID=324
    [9] BRUNNER F K, GU M. An improved model for the dual frequency ionospheric correction of GPS observations[J]. Manusur geod, 1991(16): 205-214.
    [10] BASSIRI S, HAJJ G A. Higher-order ionospheric effects on the global positioning system observables and means of modelling them[J]. Manuscripta geodaetica, 1993, 18(5): 280-289.
    [11] PETRIE E J, KING M A, MOORE P, et al. Higher-order ionospheric effects on the GPS reference frame and velocities[J]. Journal of geophysical research:solid earth, 2010, 115(B3): B03417. DOI: 10.1029/2009JB006677
    [12] FRITSCHE M, DIETRICH R, KNOFEL C, et al, Impact of higher-order ionospheric terms on GPS estimates[J]. Geophysical research letters, 2005, 32(23): 23311. DOI: 10.1029/2005GL024342
    [13] GARCIA-FERNANDEZ M, DESAI S D, BUTALA M D, et al. Evaluation of different approaches to modeling the second-order ionospheric delay on GPS measurements[J]. Journal of geophysical research:space physics, 2013, 118(12): 7864-7873. DOI: 10.1002/2013JA019356
    [14] ELSOBEIEY M, EL-RABBANY A. Impact of second-order ionospheric delay on GPS precise point positioning[J/OL]. [2022-08-20]. Journal of applied geodesy, 2011, 5(1): 37-45. https://www.zhangqiaokeyan.com/academic-journal-foreign_journal-applied-geodesy_thesis/0204112329466.html
    [15] HERNANDEZ-PAJARES M, JUAN J M, SANZ J, et al. Second-order ionospheric term in GPS: implementation and impact on geodetic estimates[J]. Journal of geophysical research:solid earth, 2007, 112(B8): B08417. DOI: 10.1029/2006JB004707
    [16] AKGUL V, JIN S, GURBUZ G, et al. High-order ionospheric effects on 3-D GPS coordinate estimation in Turkey[C]//IGARSS 2018-2018 IEEE Inrenational Geoscience and Remote Sensing Symposium, 2018: 3135-3138.
    [17] CHEN X, GE M, MARQUES H A, et al. Evaluating the impact of higher-order ionospheric corrections on multi-GNSS ultra-rapid orbit determination[J]. Journal of geodesy, 2019, 93(9): 1347-1365. DOI: 10.1007/s00190-019-01249-7
    [18] AKGUL V, GURBUZ G, KUTOGLU S H, et al. Effects of the high-order ionospheric delay on GPS-based tropospheric parameter estimations in Turkey[J]. Remote sensing, 2020, 12(21): 3569. DOI: 10.3390/rs12213569
    [19] QI L, GUO J, XIA Y, et al. Effect of higher-order ionospheric delay on precise orbit determination of GRACE-FO based on satellite-borne GPS technique[J]. IEEE access, 2021(9): 29842-29849. DOI: 10.1109/ACCESS.2021.3059296
    [20] ZHOU H T, WANG L, FU W J, et al. Impact of higher-order ionospheric delay on the reliability of RTK ambiguity estimation[J]. Advances in space research, 2022, 69(1): 727-736. DOI: 10.1016/j.asr.2021.09.031
    [21] HADAS T, KRYPIAK-GREGORCZY A, HERNANDEZ-PAJARES M, et al. Impact and implementation of higher-order ionospheric effects on precise GNSS applications[J]. Journal of geophysical research:solid earth, 2017, 122(11): 9420-9436. DOI: 10.1002/2017jb014750
    [22] ZUS F, DENG Z, WICKERT J. The impact of higher-order ionospheric effects on estimated tropospheric parameters in precise point positioning[J]. Radio science, 2017, 52(8): 963-971. DOI: 10.1002/2017rs006254
    [23] 曹炳强, 成英燕, 许长辉, 等. 间距分区法在解算卫星连续运行站数据中的应用[J]. 测绘通报, 2016(11): 15-17. DOI: 10.13474/j.cnki.11-2246.2016.0355
  • 加载中
图(9) / 表(11)
计量
  • 文章访问数:  478
  • HTML全文浏览量:  114
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-31
  • 录用日期:  2022-10-20
  • 网络出版日期:  2023-02-07

目录

    /

    返回文章
    返回