The design and simulation of a small active Loran-C receiving antenna
-
摘要: 针对罗兰-C无线电导航信号接收需求,研究一种高性能的罗兰-C小型有源接收天线,可以减小天线体积和安装难度,方便罗兰-C导航接收机的使用,具有较高的实用意义. 天线主体采用磁棒线圈天线接收长波频段罗兰-C信号,在天线内设计了包含放大电路、带通滤波电路、差分输出电路和供电电路在内的前端信号调理电路,从而增大信号灵敏度,提高信噪比;设计了一体化的天线结构,以便工程化应用. 通过仿真和实测结果表明:该天线在工作频带内,可以全向高效接收罗兰-C信号,而且对接收到的微弱罗兰-C信号进行放大并滤除带外噪声,信号强度和信噪比满足使用要求. 该天线具有体积小、灵敏度高、使用方便的特点,可应用于罗兰-C无线电导航,组合导航、附加二次相位时延计算等场景.Abstract: Aiming at the needs of Loran-C to receive radio navigation signals, a high-performance Loran-C small active receiving antenna is studied, which can greatly facilitate the use of Loran-C navigation receivers. It is of high practical significance to reduce the volume of the antenna to reduce the difficulty of installation. The main body of the antenna adopts a magnetic rod coil antenna to receive the Loran-C signal in the long-wave band. The front-end signal conditioning circuit including amplifier circuit, band-pass filter circuit, differential output circuit and power supply circuit is designed to increase signal sensitivity and signal-to-noise ratio; an integrated antenna structure is designed for engineering application. Simulations show that the antenna can efficiently receive Loran-C signals. It can amplify the weak Loran-C signal and filter out out-of-band noise, and the signal strength and signal-to-noise ratio meet the requirements. The antenna has the characteristics of small size, high sensitivity and convenient use, and can be used in Loran-C radio navigation, combined Navigation, additional secondary phase delay calculation and other scenarios.
-
Key words:
- Loran-C /
- active receiving antenna /
- magnetic antenna /
- differential amplifier circuit /
- filter circuit
-
表 1 不同线圈匝数对应的磁芯直径及电感值
磁芯直径/mm 线圈电感 最优匝数 中波 长波 中波 长波 8 0.2~0.3 1~1.5 60~80 100~150 10 0.2~0.3 1~1.5 35~50 80~120 15 0.2~0.3 1~1.5 20~25 60~80 表 2 各级滤波器参数
滤波器级数 通带增益 中心频率/kHz Q 最小GBW需求/MHz 1 1 96.230 4 5.416 52.118 4 2 1 103.917 2 5.416 56.281 6 3 1 91.180 8 13.121 119.638 3 4 1 109.672 2 13.121 143.900 9 表 3 高通滤波器参数
滤波器级数 通带增益 截止频率/kHz Q 最小GBW需求/MHz 1 1 90 0.51 4.59 2 1 90 0.60 5.40 3 1 90 0.90 8.10 4 1 90 2.56 23.04 表 4 低通滤波器参数
滤波器级数 通带增益 截止频率/kHz Q 最小GBW需求/MHz 1 1 110 0.51 5.61 2 1 110 0.60 6.60 3 1 110 0.90 9.90 4 1 110 2.56 28.16 表 5 仿真条件设置
编号 频率/kHz 幅度/ Vpp 1 20 0.1 2 100 0.1 3 300 0.1 4 1 024 0.1 表 6 仿真信号设置
编号 频率 幅度/ Vpp 1 罗兰-C信号 0.1 2 20 kHz干扰 0.1 3 300 kHz干扰 0.1 4 1 MHz干扰 0.1 -
[1] VOLPE J A. Vulnerability assessment of the transportation infrastructure relying on the Global Positioning System[R/OL]. [2022-07-21]. International workshop on algorithms forwireless mobile ad hoc & sensor networks, 2001. https://www.flyron.com/downloads/GPSVulnerabilityAssessment.pdf [2] BUTTERLINE E, FRODGE S L. GPS: synchronizing our telecommunications networks[C]//The 12th International Technical Meeting of the satellite Division of the Institute of navigation, 1999: 597-605. [3] MEDINA D, LASS C, MARCOS E P, et al. On GNSS jamming threat from the maritime navigation perspective[C]//The 22th International Conference on Information Fusion (FUSION), 2019: 1-7. DOI: 10.23919/FUSION43075.2019.9011348 [4] LINN R G. The case for loran[J/OL]. [2022-07-21]. Journal of air traffic control, l999, 41(3): 24-28. https://trid.trb.org/view/615104 [5] OFFERMANS G W A, HELWIG A W S, VAN WILLIGEN D. Eurofix system and its developments[J]. The journal of navigation, 1999, 52(2): 163-175. DOI: 10.1017/S0373463399008231 [6] OFFERMANS G W A, HELWIG A W S, VAN WILLIGEN D. Eurofix: test results of a cost- effective DGNSS augmentations system [C]//International Conference of the Royal Institute of Navigation, 1996. DOI: 10.1017/S037346330002381X [7] VAN WILLIGEN D, OFFERMANS G W A, HELWIG A W S, et al. Eurofix: status, performance and possible interoperability with GNSS, WAAS & EGNOS[C]// The 14th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2001), 2001: 2398-2405. [8] OFFERMANS G W A, HELWIG A W S, VAN ESSEN R F, et al. Integration aspects of DGNSS and Loran-C for land applications [C]// The 53rd Annual Meeting of The Institute of Navigation (1997), 1997: 523-531. [9] 高久翔, 原艳宁, 师振盛, 等. 高性能罗兰-C接收天线设计[J]. 电子技术应用, 2022, 48(4): 132-136. DOI: 10.16157/j.issn.0258-7998.211820 [10] 武鹏宽, 徐良, 张辉. 一种罗兰C磁天线的设计[C]//全国天线年会, 2017: 1415-1417. [11] 崔国恒, 曹可劲, 许江宁, 等. 基于罗兰C 的全向磁天线技术研究[J]. 计算机测量与控制, 2010, 18(12): 2821-2832. [12] 曾鹏, 胡东亮. 罗兰C磁天线的设计与性能研究[J]. 弹箭与制导学报, 2009, 29(6): 249-252. DOI: 10.3969/j.issn.1673-9728.2009.06.069 [13] 刘卿. 电小天线在甚低频接收系统中的应用研究[D]. 武汉: 武汉大学, 2018. [14] 张绪德. 罗兰 C 小型化有源接收天线的研究[D]. 成都: 电子科技大学, 2018. [15] 葛志斌. 罗兰-C磁天线设计与研究[D]. 西安: 西安理工大学, 2021. [16] 杜树春. 集成运算放大器应用经典实例[M]. 北京: 电子工业出版社, 2015.