留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超高阶地球重力场模型的GNSS高程转化方法

赵保成 徐健 徐坚

赵保成, 徐健, 徐坚. 基于超高阶地球重力场模型的GNSS高程转化方法[J]. 全球定位系统, 2023, 48(1): 51-56. doi: 10.12265/j.gnss.2022141
引用本文: 赵保成, 徐健, 徐坚. 基于超高阶地球重力场模型的GNSS高程转化方法[J]. 全球定位系统, 2023, 48(1): 51-56. doi: 10.12265/j.gnss.2022141
ZHAO Baocheng, XU Jian, XU Jian. GNSS height conversion method based on ultra-high order earth gravitational model[J]. GNSS World of China, 2023, 48(1): 51-56. doi: 10.12265/j.gnss.2022141
Citation: ZHAO Baocheng, XU Jian, XU Jian. GNSS height conversion method based on ultra-high order earth gravitational model[J]. GNSS World of China, 2023, 48(1): 51-56. doi: 10.12265/j.gnss.2022141

基于超高阶地球重力场模型的GNSS高程转化方法

doi: 10.12265/j.gnss.2022141
基金项目: 国家重点研发专项(2018YFD1100450);长江科学院(CKSF2019410+KJ,CKSF201941+KJ,CKSF2019528/KJ);湖北省自然资源厅科技计划项目(ZRZY2021KJ10)
详细信息
    作者简介:

    赵保成:(1990—),男,硕士,工程师,研究方向为测绘科学与技术在水利测绘中的应用

    徐健:(1991—) ,男,硕士,工程师,研究方向为地理信息系统在水利信息化中的应用

    徐坚:(1988—) ,男,博士,高级工程师,研究方向为地理信息系统在水利信息化中的应用

    通信作者:

    赵保成 E-mail:515524535@qq.com

  • 中图分类号: P228.4

GNSS height conversion method based on ultra-high order earth gravitational model

  • 摘要: 为了将全球卫星导航系统(GNSS)得到的大地高直接应用于工程建设中,需要将大地高转换为正常高,基于5种超高阶地球重力场模型结合改进的“移去-拟合-恢复”法开展了GNSS高程转换方法研究,对实验结果的对比分析表明:在实验测区内,利用SGG-UGM-2地球重力场模型直接计算得出的高程异常值与真实高程异常的符合程度更高,中误差为±0.009 3 m. 当采用“移去-拟合-恢复法”后,利用XGM2019e_2159地球重力场模型的高程异常拟合效果更优,中误差、极差、偏度值与峰度值最小,分别为±4.786 6 mm、18.875 7 mm、−0.648 8、0.887 8.

     

  • 图  1  高程系统关系图

    图  2  改进的移去-拟合-恢复法流程图

    图  3  实验点位分布图

    图  4  模型计算高程异常图

    图  5  模型计算高程异常拟合残差图

    表  1  模型高程异常精度评定表 m

    地球重力场模型中误差最小值中位数最大值均值
    ζEGM2008-ζ真实±0.011 10.019 90.040 50.062 20.039 4
    ζEIGEN-6C4-ζ真实±0.010 30.023 00.041 70.059 40.041 1
    ζSGG-UGM-2-ζ真实±0.009 30.012 10.027 80.044 80.027 5
    ζXGM2019e_2159-ζ真实±0.010 60.048 30.065 80.087 80.066 8
    ζGECO-ζ真实±0.010 10.059 50.076 10.094 30.075 6
    下载: 导出CSV

    表  2  5种方案的拟合精度评定表

    地球重力场模型中误差/mm极差值/mm偏度峰度
    EGM2008±5.785 424.672 0−0.958 92.554 6
    EIGEN-6C4±5.810 024.693 3−0.971 82.537 9
    SGG-UGM-2±5.815 324.408 3−0.924 42.320 3
    XGM2019e_2159±4.786 618.875 7−0.648 80.887 8
    GECO±7.622 530.555 7−0.834 81.577 8
    下载: 导出CSV
  • [1] 许厚泽. 全球高程系统的统一问题[J]. 测绘学报, 2017, 46(8): 939-944.
    [2] 赫林, 李建成, 褚永海. 1985国家高程基准与全球高程基准之间的垂直偏差[J]. 测绘学报, 2016, 45(7): 768-774.
    [3] 郭海荣, 焦文海, 杨元喜, 等. 1985国家高程基准的系统差[J]. 武汉大学学报(信息科学版), 2004, 29(8): 715-719.
    [4] 徐绍铨, 张华海, 杨志强, 等. GPS测量原理与应用[M]. 武汉: 武汉大学出版社, 2006.
    [5] 罗陶荣, 王中元, 梁宁, 等. 利用EGM2008模型与加权组合模型进行高程异常拟合[J]. 测绘通报, 2018(1): 28-32.
    [6] 田晓, 郑洪艳, 许明元, 等. 一种改进的适用于不同地形的GPS高程拟合模型[J]. 测绘通报, 2017(1): 35-38,64.
    [7] 肖杰, 张锦, 邓增兵, 等. 矿区似大地水准面精化方法研究[J]. 测绘通报, 2015(2): 14-18.
    [8] 陈冲林, 马燕燕, 李江, 等. 基于EIGEN 6C4的高山区似大地水准面的确定[J]. 地矿测绘, 2017, 33(4): 8-10.
    [9] 李玉平. 超高阶重力场模型计算高程异常算法与实现[J]. 海洋测绘, 2018, 38(3): 1-4.
    [10] 余宣兴, 詹昊, 朱明新, 等. EGM2008地球重力场模型在GPS高程转换中的应用研究[J]. 测绘通报, 2013(12): 18-20.
    [11] 吴恒友. 基于EGM2008重力场模型的GPS高程拟合测量的实用性分析[J]. 大地测量与地球动力学2015, 35(6): 945-947, 952.
    [12] 王科. XGM2019重力场模型在GPS高程拟合中的精度分析[J]. 测绘, 2020, 43(4): 157-160.
    [13] 贾雪, 徐炜, 刘超, 等. 顾及地球重力场模型的GNSS高程转换方法[J]. 测绘科学, 2019, 44(5): 14-20.
    [14] 黎剑. 区域GPS高程异常拟合及建模方法研究[D]. 昆明: 昆明理工大学, 2013.
    [15] 刘斌, 郭际明, 史俊波, 等. 利用EGM2008模型与地形改正进行GPS高程拟合[J]. 武汉大学学报(信息科学版), 2016, 41(4): 554-558.
    [16] PAVLIS N K, HOLMES S, KENYON S. The develoment and evalution of the earth gravitationational model 2008(EGM2008)[J]. Journal of geophysical research atmos pheres, 2012(117): 1-38. DOI: 10.1029/2011JB008916
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  207
  • HTML全文浏览量:  117
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-10
  • 录用日期:  2022-09-27
  • 网络出版日期:  2023-01-31

目录

    /

    返回文章
    返回