Real-time monitoring of orbital maneuvers of BDS-3 GEO satellites based on station networks of different spatial scales
-
摘要: 地球静止轨道(GEO)卫星为保持地球同步特性,需要频繁进行轨道机动,及时准确的对卫星轨道机动的状态进行动态监测,有助于对卫星真实轨道进行修复,使其在机动过程中仍能提供基本可用的轨道参数. 利用基于历元差分测速原理的卫星轨道监测模型,对北斗三号卫星导航系统(BDS-3)的2颗GEO卫星各12次历史机动进行了分析. 结果表明:所选不同空间尺度测站网均可以对C59卫星的机动时间与轨道动态变化进行实时监测,且监测结果基本一致. 另外,本文所选的不同空间尺度测站网均可对C60卫星机动时间进行精准探测,但在对其轨道状态进行实时监测时,空间尺度较大的测站网监测结果更优.
-
关键词:
- 北斗三号卫星导航系统(BDS-3) /
- 地球静止轨道(GEO)卫星轨道机动 /
- 实时监测 /
- 历元差分速度估计 /
- 载波相位观测值
Abstract: In order to maintain the geosynchronous characteristics of geostationary earth orbit (GEO) satellites, frequent orbital maneuvers are required. Timely and accurate dynamic monitoring of the state of satellite orbit maneuvers is helpful for repairing the true satellite orbit, so that it can still provide basic orbital parameters during maneuvering. In this paper, 12 historical maneuvers of each of the two GEO satellites of BeiDou-3 Navigation Satellite System (BDS-3) are analyzed using a satellite orbit monitoring model based on the principle of time differential velocity measurement. The results show that the station network of different spatial scales selected in this paper can monitor the maneuver period and orbital dynamic variation of the C59 satellite in real time, and the monitoring results are basically consistent. In addition, the station networks of different spatial scales selected in this paper can accurately detect the maneuver period of the C60 satellite, but when monitoring its orbital state in real time, the monitoring results of the station network with a larger spatial scale are better. -
表 1 不同测站所探测到的C59卫星2022年第154天轨道机动时间对比
广播星历标记轨道机动时间 测站 探测开始时间 探测结束时间 09:00:00—15:00:00 MIZU 08:23:30 13:30:30 MKEA 08:23:30 13:30:30 NNOR 08:25:00 13:30:30 表 2 所选测站详情信息
m 测站 接收机类型 天线类型 X Y Z ALIC SEPT POLARX5 LEIAR25.R3 −4 052 051.766 1 4 212 836.214 1 −2 545 106.026 4 DARW SEPT POLARX5 JAVRINGANT_DM −4 091 359.612 1 4 684 606.422 8 −1 408 579.125 7 DJIG SEPT POLARX5 TRM59800.00 4 583 085.826 0 4 250 982.209 7 1 266 242.975 0 IISC SEPT POLARX5 ASH701945E_M 1 337 936.455 0 6 070 317.126 1 1 427 876.785 2 JFNG TRIMBLE ALLOY TRM59800.00 −2 279 827.881 0 5 004 704.218 1 3 219 776.875 7 MIZU SEPT ASTERX4 SEPCHOKE_B3E6 −3 857 167.648 4 3 108 694.913 8 4 004 041.687 6 MKEA SEPT POLARX5 JAVRINGANT_DM −5 464 105.317 0 −2 495 165.842 0 2 148 291.476 0 MOBS SEPT POLARX5 JAVRINGANT_DM −4 130 636.754 2 2 894 953.139 8 −3 890 530.236 7 NNOR SEPT POLARX5TR SEPCHOKE_B3E6 −2 414 151.446 0 4 907 778.504 0 −3 270 645.187 0 SGOC SEPT POLARX5 TRM59800.00 −3 184 364.616 4 5 291 037.196 2 1 590 413.571 1 ULAB JAVAD TRE_3 JAVRINGANT_G5T −1 257 408.923 4 4 099 404.397 4 4 707 992.671 5 表 3 不同空间尺度测站网对C59卫星监测结果对比
m 卫星 机动日期 大型网络-中型网络 大型网络-小型网络 X-STD Y-STD Z-STD X-STD Y-STD Z-STD C59 2022-153 0.162 3 0.212 6 0.130 2 0.202 8 0.251 5 0.252 1 2021-188 0.136 5 0.177 2 0.090 6 0.280 8 0.330 5 0.369 1 2021-220 0.182 7 0.241 8 0.129 1 0.268 6 0.339 0 0.229 9 2021-252 0.232 2 0.288 6 0.186 9 0.221 0 0.260 2 0.269 7 2021-282 0.157 1 0.195 6 0.124 1 0.230 4 0.282 4 0.226 1 2021-314 0.220 8 0.292 2 0.118 7 0.233 4 0.285 7 0.252 4 2021-343 0.117 2 0.157 3 0.095 4 0.152 8 0.185 1 0.222 1 2022-008 0.173 9 0.226 5 0.165 5 0.259 4 0.331 7 0.236 1 2022-040 0.163 9 0.224 3 0.092 9 0.178 8 0.223 0 0.215 9 2022-070 0.126 0 0.168 2 0.143 9 0.182 7 0.220 0 0.232 6 2022-098 0.141 3 0.185 9 0.096 3 0.192 7 0.243 6 0.263 9 2022-127 0.110 3 0.145 7 0.099 2 0.109 7 0.127 2 0.229 5 2022-154 0.156 0 0.211 1 0.132 7 0.220 5 0.276 8 0.305 2 表 4 不同空间尺度测站网对C60卫星监测结果对比
m 卫星 机动日期 大型网络-中型网络 大型网络-小型网络 X-STD Y-STD Z-STD X-STD Y-STD Z-STD C60 2022-100 0.201 5 0.049 8 0.078 7 0.538 0 0.200 7 0.533 3 2021-179 0.239 7 0.058 2 0.097 0 0.495 2 0.171 0 0.452 3 2021-200 0.164 8 0.038 1 0.076 9 0.413 4 0.133 9 0.437 6 2021-222 0.141 9 0.035 1 0.084 3 0.430 1 0.131 8 0.407 7 2021-248 0.226 2 0.056 7 0.115 6 0.392 6 0.121 8 0.410 6 2021-271 0.194 8 0.049 0 0.088 8 0.415 7 0.131 1 0.417 2 2021-293 0.204 6 0.051 5 0.079 5 0.515 5 0.167 3 0.555 7 2021-323 0.129 1 0.032 3 0.106 9 0.586 3 0.185 5 0.523 5 2021-358 0.167 9 0.040 6 0.107 8 0.519 0 0.163 0 0.569 2 2022-028 0.244 1 0.055 0 0.130 3 0.518 4 0.190 3 0.510 6 2022-058 0.171 2 0.044 7 0.078 7 0.563 1 0.209 7 0.541 7 2022-085 0.322 7 0.108 9 0.080 5 0.601 1 0.207 4 0.482 5 2022-105 0.291 3 0.099 6 0.104 7 0.580 5 0.206 1 0.530 5 表 5 不同尺度测站网对C59卫星轨道机动时间的探测结果对比
min C59 大型网络-中型网络 大型网络-小型网络 开始时间
之差结束时间
之差开始时间
之差结束时间
之差最大值 5.00 0.00 0.50 0.00 平均值 –0.38 0.00 0.92 0.00 最小值 –6.00 0.00 –6.00 0.00 表 6 不同尺度测站网对C60卫星轨道机动时间的探测结果对比
min C60 大型网络-中型网络 大型网络-小型网络 开始时间
之差结束时间
之差开始时间
之差结束时间
之差最大值 2.00 1.50 0.50 0.00 平均值 –0.17 0.17 0.08 0.00 最小值 –1.50 –1.50 0.00 0.00 -
[1] YANG Y X, GAO W G, GUO S R, et al. Introduction to BeiDou-3 Navigation Satellite System[J]. Navigation, 2019, 66(1): 7-18. DOI: 10.1002/navi.291 [2] YANG Y X, MAO Y, SUN B J. Basic performance and future developments of BeiDou Global Navigation Satellite System[J]. Satellite navigation, 2020, 1(1): 1-8. DOI: 10.1186/s43020-019-0006-0 [3] 范丽红. BDS卫星空间信号异常探测及性能评估方法研究[D]. 西安: 长安大学, 2018. [4] TU R, ZHANG R, FAN L H, et al. Real-time monitoring of the dynamic variation of satellite orbital maneuvers based on BDS observations[J]. Measurement, 2021, 168(9): 108331. DOI: 10.1016/j.measurement.2020.108331 [5] 李征航, 张卫星, 龚晓颖, 等. 导航卫星自主定轨时轨道机动问题的处理方法[J]. 武汉大学学报(信息科学版), 2011, 36(11): 1309-1313. [6] WALTER T, ENGE P, BLANCH J, et al. Worldwide vertical guidance of aircraft based on modernized GPS and new integrity augmentations[J]. Proceedings of the IEEE, 2009, 96(12): 1918-1935. DOI: 10.1109/jproc.2008.2006099 [7] 李涛, 黄昊, 陈磊. 利用预报误差分布拟合实现卫星历史轨道机动检测的方法[J]. 国防科技大学学报, 2020, 42(2): 114-120. [8] HUANG G W, QIN Z W, ZHANG Q, et al. An optimized method to detect BDS satellites’ orbit maneuvering and anomalies in real-time[J]. Sensors, 2018, 18(3): 726. DOI: 10.3390/s18030726 [9] 王庆瑞, 邹江威, 吴文振, 等. 基于Neyman-Pearson准则的空间目标轨道机动检测方法[J]. 中国空间科学技术, 2021, 41(2): 96-103. [10] YE F, YUAN Y B, TAN B F, et al. A robust method to detect BeiDou Navigation Satellite System orbit maneuvering/anomalies and its applications to precise orbit determination[J]. Sensors, 2017, 17(5): 1129. DOI: 10.3390/s17051129 [11] TU R, ZHANG R, ZHANG P F, et al. Recover the abnormal positioning, velocity and timing services caused by BDS satellite orbital maneuvers[J]. Satellite navigation, 2021, 2(1): 1-11. DOI: 10.1186/s43020-021-00048-w [12] 王星星, 涂锐, 洪菊, 等. 基于历元差分原理的BDS测速模型及性能分析[J]. 大地测量与地球动力学, 2019, 39(1): 7-12. [13] SASTAMOINEN J. Atmospheric correction for troposphere and stratosphere in radio ranging of satellites, in the use of artifical satellites for geodesy[J]. Geophysical monograph series, 1972(15): 247-251. DOI: 10.1029/GM015p0247 [14] LEICK A, RAPOPORT L, TATARNIKOV D. GPS satellite surveying[M]. Wiley, 2015. DOI: 10.1002/9781119018612 [15] GRAAS F V, SOLOVIEV A. Precise velocity estimation using a stand-alone GPS receiver[J]. Journal of the institute of navigation, 2004, 51(4): 283-292. DOI: 10.1002/j.2161-4296.2004.tb00359.x