Performance evaluation of atmospheric precipitable water vapor inversion of mutil-system GNSS at selected MGEX stations
-
摘要: 2020年6月北斗卫星导航系统(BDS)完成全面组网,为分析其解算水汽信息的精度,选用15个MGEX (Multi-GNSS Experiment)测站2021年10月至11月的观测数据进行水汽反演. 利用GAMIT软件分别解算BDS、GPS、Galileo和GLONASS的观测数据,将得到的对流层天顶延迟(ZTD)与国际GNSS服务(IGS)发布的结果进行对比,并将解算的大气可降水量(PWV)分别与探空数据、ERA5数据计算得到的PWV对比. 实验结果表明:截止高度角设置为5°时,4个卫星系统估计的ZTD均方根 (RMS)均小于13 mm,GPS-PWV、BDS-PWV、Galileo-PWV、GLONASS-PWV与无线电探空可降水量(RS-PWV)相比,RMS平均值分别为2.25 mm、2.46 mm、2.52 mm和2.84 mm,RMS均小于3 mm;与ERA5-PWV相比,RMS平均值分别为1.63 mm、1.86 mm、1.76 mm和1.99 mm,RMS均小于2 mm. GPS探测水汽的精度最高,BDS探测水汽的精度低于GPS和Galileo,高于GLONASS,均满足气象学应用需求.
-
关键词:
- 北斗卫星导航系统(BDS) /
- 对流层天顶总延迟(ZTD) /
- 大气可降水量(PWV) /
- 探空数据 /
- ERA5
Abstract: In June 2020, the BeiDou Navigation Satellite System (BDS) completed its global coverage deployment. In order to analyze the accuracy of BDS derived water vapor information, the observed data of 15 MGEX stations in October and November 2021 were used to invert carry out water vapor. The well-known comprehensive GNSS data processing software package GAMIT was used to calculate the observation data of BDS, GPS, Galileo and GLONASS respectively, and the tropospheric zenith total delay (ZTD) was compared with the results provided by IGS, and the PWV was compared with the PWV derived from radiosonde and ERA5 data. Results show that when cutoff angle is set to 5°, the root mean square (RMS) of the ZTD estimated by four satellite systems are all less than 13 mm. Compared with RS-PWV, GPS-PWV, BDS-PWV, Galileo-PWV and GLONASS-PWV, the mean RMSs are 2.25 mm, 2.46 mm, 2.52 mm and 2.84 mm, respectively, all RMSs are less than 3 mm. Compared with ERA5-PWV, the mean RMSs are 1.63 mm, 1.86 mm, 1.76 mm and 1.99 mm, respectively, all RMSs are less than 2 mm. GPS has the highest water vapor determination accuracy, while BDS’s accuracy of water vapor detection is lower than that of GPS and Galileo, but higher than GLONASS, which can meet the requirements of meteorological applications. -
表 1 数据解算参数设置
参数选项 参数设置 解算模式 双差 观测值类型 LC_AUTCLN 轨道处理策略 BASELINE 迭代次数 1-ITER 对流层延迟时间分辨率/h 1 截止高度角/(°) $ 5 $ 采样间隔/s 30 海潮模型 Otl.FES2004.grid 对流层模型 Saastamoninen 映射函数模型 VMF1 卫星轨道 WUM精密星历 其他 default 表 2 1959至今基于气压分层ERA5逐小时数据描述
参数 取值 水平分辨率 全球0.25°×0.25° 垂直分辨率 1 000~1 hPa,共 37 个气压层 时间覆盖范围 1959 年至今 时间分辨率/h 1 气象参数 位势、相对湿度、温度、比湿等 16 个气象参数 表 3 不同截止高度角解算的GPS-ZTD的bias和RMS
mm 测站 bias/RMS 0° 5° 10° 15° 20° 25° CUSV 1.99/8.67 1.04/8.61 2.09/8.57 0.75/8.52 2.94/9.63 3.22/10.09 IISC 0.16/5.63 –0.02/5.62 0.34/5.78 –2.88/6.62 1.42/6.23 –4.24/9.04 JFNG –0.30/5.40 –0.32/5.40 –0.29/5.34 –1.15/5.75 –1.17/5.96 3.17/7.55 KIT3 1.06/5.71 0.90/5.68 1.10/5.76 –1.14/5.68 –1.41/6.51 11.96/14.04 POL2 1.04/4.50 0.95/4.54 1.07/4.57 1.74/5.06 8.38/7.63 19.00/20.14 TASH 1.48/4.56 1.37/4.53 1.46/4.60 1.68/4.81 3.59/6.38 11.74/13.25 ULAB –1.88/5.01 –1.60/5.00 –1.80/5.00 –2.76/5.53 –2.95/6.15 –12.67/14.03 URUM –1.20/5.12 –1.02/5.08 –1.14/5.11 –5.05/7.43 –6.01/11.06 –6.46/10.01 WUH2 0.67/7.12 0.56/7.05 0.71/7.04 –1.10/7.17 0.15/6.60 1.26/6.71 平均值 0.34/5.75 0.21/5.72 0.39/5.75 –1.10/6.29 0.55/7.35 3.00/11.65 -
[1] WANG J H, ZHANG L Y, DAI A G, et al. A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements[J]. Journal of geophysical research:atmospheres, 2007, 112(D11): D11107. DOI: 10.1029/2006JD007529 [2] BEVIS M, BUSINGER S, HERRING T A, et al. GPS meteorology: remote sensing of atmospheric water vapor using the Global Positioning System[J]. Journal of geophysical research:atmospheres, 1992, 97(D14): 15787-15801. DOI: 10.1029/92jd01517 [3] 张卫星. 中国区域融合地基 GNSS 等多种资料水汽反演、变化分析及应用[D]. 武汉: 武汉大学, 2016. [4] 姚宜斌, 张顺, 孔建. GNSS 空间环境学研究进展和展望[J]. 测绘学报, 2017, 46(10): 1408-1420. DOI: 10.11947/j.AGCS.2017.20170333 [5] 王朝阳, 周兴华, 卢勇夺, 等. 中国沿海地基 GPS 水汽反演精度分析[J]. 大地测量与地球动力学, 2016, 36(12): 1060-1063. [6] 董佩明, 赵思雄. 边界层过程对“98·7”长江流域暴雨预报影响的数值试验研究[J]. 气候与环境研究, 2003, 8(2): 230-240. DOI: 10.3878/j.issn.1006-9585.2003.02.10 [7] 万蓉, 郑国光. 地基 GPS 在暴雨预报中的应用进展[J]. 气象科学, 2008, 28(6): 697-702. DOI: 10.3969/j.issn.1009-0827.2008.06.019 [8] 楚艳丽, 郭英华, 张朝林, 等. 地基 GPS 水汽资料在北京“7·10”暴雨过程研究中的应用[J]. 气象, 2007, 33(12): 16-22. DOI: 10.7519/j.issn.1000-0526.2007.12.003 [9] 李国翠, 李国平, 连志鸾, 等. 地基 GPS 水汽资料在石家庄一次暴雨过程中的应用[J]. 气象与环境科学, 2007, 30(3): 50-53. DOI: 10.3969/j.issn.1673-7148.2007.03.011 [10] CHEN B Y, LIU Z Z. Analysis of precipitable water vapor (PWV) data derived from multiple techniques: GPS, WVR, radiosonde and NHM in Hong Kong[C]//China Satellite Navigation Conference (CSNC), 2014: 159-175. DOI: 10.1007/978-3-642-54737-9_16 [11] BOONE C D, WALKER K A, BERNATH P F. Speed-dependent voigt profile for water vapor in infrared remote sensing applications[J]. Journal of quantitative spectroscopy and radiative transfer, 2007, 105(3): 525-532. DOI: 10.1016/j.jqsrt.2006.11.015 [12] LU C X, FENG G L, ZHENG Y X, et al. Real-time retrieval of precipitable water vapor from Galileo observations by using the MGEX network[J]. IEEE transactions on geoscience and remote sensing, 2020, 58(7): 4743-4753. DOI: 10.1109/TGRS.2020.2966774 [13] 郭秋英, 侯建辉, 刘传友, 等. 基于北斗三号的大气水汽探测性能初步分析[J]. 全球定位系统, 2021, 46(1): 89-97,111. DOI: 10.12265/j.gnss.2020090802 [14] WANG X M, ZHANG K F, WU S Q, et al. The correlation between GNSS-derived precipitable water vapor and sea surface temperature and its responses to El Niño–Southern Oscillation[J]. Remote sensing of environment, 2018(216): 1-12. DOI: 10.1016/j.rse.2018.06.029 [15] LI H B, WANG X M, CHOY S, et al. Detecting heavy rainfall using anomaly-based percentile thresholds of predictors derived from GNSS-PWV[J]. Atmospheric research, 2021(265): 105912. DOI: 10.1016/j.atmosres.2021.105912 [16] HÉROUX P, KOUBA J. GPS precise point positioning using IGS orbit products[J]. Physics and chemismistry of the earth, part A:solid earth and geodesy, 2001, 26(6-8): 573-578. DOI: 10.1016/S1464-1895(01)00103-X [17] SAASTAMOINEN J. Contribution to the theory of atmospheric refraction[J]. Bulletin gæ odésique, 1972, 105(1): 279-298. DOI: 10.1007/BF02521844 [18] HOPFIELD H S. Two-quartic tropospheric refractivity profile for correcting satellite data[J]. Journal of geophysical research, 1969, 74(18): 4487-4499. DOI: 10.1029/jc074i018p04487 [19] BLACK H D. An easily implemented algorithm for the tropospheric range correction[J]. Journal of geophysical research:solid earth, 1978, 83(B4): 1825-1828. DOI: 10.1029/JB083iB04p01825 [20] 吴旭祥, 郭秋英, 侯建辉. 基于BDS精密星历产品的水汽探测性能分析[J]. 全球定位系统, 2019, 44(5): 91-99. DOI: 10.13442/j.gnss.1008-9268.2019.05.014 [21] 任超, 彭家頔, 佘娣, 等. 低高度角卫星信号对提高对流层估计精度的影响分析[J]. 大地测量与地球动力学, 2011, 31(6): 124-127. DOI: 10.14075/j.jgg.2011.06.010