Effects of stochastic models on BDS DCB estimation and ionospheric modeling
-
摘要: 差分码偏差(DCB)作为电离层建模和导航定位中一项重要的误差源,对其进行估计求解至关重要. 为提高北斗卫星导航系统(BDS) DCB估计和电离层建模精度,提出了一种综合高度角、卫地距和测站纬度多因素的随机模型,并对比分析了不同随机模型对BDS DCB估计和电离层垂直总电子含量(VTEC)建模精度的影响. 结果表明:不同随机模型对卫星端DCB解算产生约0.2 ns差异. 相较于高度角随机模型,采用高度角、卫地距组合模型测站DCB估计精度平均提高0.13 ns,电离层建模精度提高了约0.2 TECU. 新提出的随机模型,在低纬度测站DCB解算精度上差于高度角模型和高度角、卫地距组合模型,但在高纬度测站DCB解算结果上更优,且对电离层VTEC建模精度提升效果明显,与前两种随机模型相比分别提升了0.88 TECU和0.68 TECU.
-
关键词:
- 差分码偏差(DCB) /
- 随机模型 /
- 北斗卫星导航系统(BDS) /
- 电离层模型 /
- 总电子含量(TEC)
Abstract: As an important error source in ionospheric modeling and navigation, so it is very important to estimate and solve it. In order to improve the accuracy of differential code bias (DCB) estimation and ionospheric modeling, this paper proposes a multi-factor stochastic model based on altitude angle, the distance between the station and the satellite and station latitude, and analyzes the influence of different stochastic models on the accuracy of DCB estimation and ionospheric vertical total electron content (VTEC) modeling. The results indicated that different stochastic models may produce about 0.2 ns difference in satellite DCB. Compared with altitude angle weighting method, the estimation accuracy of station DCB was improved by 0.13 ns on average, and the ionospheric modeling accuracy was improved by about 0.2 TECU when the combine model of the elevation angel and the distance from the satellite to the ground station was used. Under the new stochastic model, the DCB solution of low latitude stations was worse than the first two methods, but the DCB solution of high latitude stations was better, and the modeling accuracy of ionospheric VTEC was improved significantly, which was 0.88 TECU and 0.68 TECU respectively, compared with the first two stochastic models. -
表 1 三种方案下北斗C2I-C6I类型卫星DCB平均估值
ns 卫星 PRN 方案1 方案2 方案3 GEO C01 −1.37 −1.34 −1.23 C02 4.25 4.22 4.36 C03 5.62 5.62 5.59 C04 8.82 8.85 9.06 C05 2.73 2.74 3.05 MEO C11 7.25 7.23 7.26 C12 6.71 6.67 6.73 C20 21.48 21.66 21.71 C24 7.98 7.94 7.81 C30 −8.58 −8.55 −8.55 IGSO C06 11.73 11.74 11.64 C07 18.10 18.10 18.02 C10 9.44 9.37 9.28 C38 4.63 4.63 4.70 C40 1.35 1.33 1.57 表 2 各测站DCB与CAS DCB的平均差值
ns 测站 方案1 方案2 方案3 SGOC 0.62 0.51 1.12 IISC 0.59 0.59 1.44 GUAM 0.83 1.03 1.22 CUSV 0.75 0.71 0.71 PTGG 1.76 1.60 1.88 WUH2 0.92 0.61 0.39 GAMG 0.60 0.56 0.66 POL2 2.51 2.39 2.15 URUM 3.27 3.04 2.80 ULAB 3.38 2.90 2.69 -
[1] 邓远帆, 郭斐, 张小红, 等. 北斗三号卫星多频多通道差分码偏差估计与分析[J]. 测绘学报, 2021, 50(4): 448-456. [2] 刘姣, 陈俊平, 王彬. 估计卫星频间偏差的GLONASS伪距定位改进模型及其验证[J]. 大地测量与地球动力学, 2021, 41(1): 27-33. DOI: 10.14075/j.jgg.2021.01.006 [3] 王健, 党亚民, 王虎, 等. 融合BDS/GPS/GLONASS解算卫星差分码偏差及精度分析[J]. 测绘通报, 2018(10): 6-9,21. DOI: 10.13474/j.cnki.11-2246.2018.0304 [4] 姚宜斌, 刘磊, 孔建, 等. GIM和不同约束条件相结合的BDS差分码偏差估计[J]. 测绘学报, 2017, 46(2): 135-143. DOI: 10.11947/j.AGCS.2017.20160375 [5] LI Z S, YUAN Y B, LI H, et al. Two-step method for the determination of the differential of the differential code biases of COMPASS satellites[J]. Journal of geodesy, 2012, 86(11): 1059-1076. DOI: 10.1007/s00190-012-0565-4 [6] WANG N B, YUAN Y B, LI Z S, et al. Determination of differential code biases with multi-GNSS observations[J]. Journal of geodesy, 2016, 90(3): 209-228. DOI: 10.1007/s00190-015-0867-4 [7] 张宝成, 欧吉坤, 袁运斌, 等. 利用非组合精密单点定位技术确定斜向电离层总电子含量和站星差分码偏差[J]. 测绘学报, 2011, 40(4): 447-453. [8] WANG J, HUANG G W, ZHOU P Y, et al. Advantages of uncombined precise point positioning with fixed ambiguity resolution for slant total electron content (STEC) and differential code bias (DCB) estimation[J]. Remote sensing 2020, 12(2): 304. DOI: 10.3390/rs12020304 [9] LI X X, MA T Z, XIE W L, et al. FY-3D and FY-3C onboard observations for differential code biases estimation[J]. GPS solutions, 2019, 23(2): 57. DOI: 10.1007/s10291-019-0850-2 [10] 徐丹丹, 赵兴旺, 徐跃, 等. GPS双频观测值差分码偏差估计及精度分析[J]. 全球定位系统, 2018, 43(5): 17-22. DOI: 10.13442/j.gnss.1008-9268.2018.05.003 [11] ELGHAZOULY A, DOMA M, SEDEEK A. Estimating satellite and receiver differential code bias using a relative Global Positioning System network[J]. Annales geophysicae, 2019, 37(6): 1039-1047. DOI: 10.5194/ANGEO-37-1039-2019 [12] 刘乾坤, 隋立芬, 肖国锐, 等. 北斗系统差分码偏差解算中一种新的定权方法[J]. 测绘科学技术学报, 2015, 32(5): 473-478. DOI: 10.3969/j.issn.1673-6338.2015.05.008