Research on integrated signal design for navigation, communication and detection
-
摘要: 随着现代社会从信息化时代向智能化时代发展,导航通信探测信号的数量急剧增长,指标要求也日益提高,在有限的频谱资源、设备重量、体积与功耗约束下,人们对资源共享多功能一体化信号的需求愈发迫切. 如何通过灵活的信号设计实现资源高效利用和功能动态调整,是该领域当前亟待解决的难题. 本文首先提出了基于“积木单元”思想的信号设计框架,将信号表征为信号矢量和波形基函数的形式,选择基函数的系数组合重构信号矢量,就可以等价地表示对应的信号设计,从而将波形域的信号优化设计转换为信号空间的矢量优化问题. 进一步,分析了传统的信号评估方法,在所提的一体化信号设计框架下推导了导航、通信、探测信号度量准则. 最后,提出了一体化信号度量准则,为信号设计提供了可解释、可量化的优化目标,并讨论了一体化信号设计需要考虑的部分约束,包括能量约束、电磁频谱约束、峰均比等.Abstract: As the modern society is changing from the information age to the intelligent age, the number and performance requirements of navigation, communication and detection signals have increased dramatically, and the demand for multi-functional integrated signals is becoming more and more urgent. In this field, it is a crucial issue to achieve efficient utilization of resources and dynamic adjustment of functions through flexible signal design. This paper first proposes a signal design framework based on the idea of “building blocks”. The designed signals are represented in the form of signal vectors and waveform basis functions. The corresponding signal design can be equivalently represented by reconstructing the signal vector with the coefficient combinations of the basis functions, thereby converting the signal optimization in the waveform space into the vector optimization in the signal space. Further, this paper analyzes the traditional signal evaluation methods, and derives the navigation, communication, and detection signal evaluation criteria under the integrated signal design framework. Finally, this paper proposes quantifiable optimization objectives for integrated signal design, and makes some discussion on design constraints, including energy constraints, spectrum constraints, peak-to-average ratio, etc.
-
表 1 典型滤波器特性
特性 典型滤波器函数 优化符号间干扰(ISI)或
载波间干扰(ICI)矩形函数、根据通道色散设计脉冲 减少单元外时域和
频域能量泄露Prolate窗、凯泽函数、高斯函数、
扩展高斯函数实现频域旁瓣快速衰减 升余弦函数、锥形余弦函数、
修正Kaiser函数可在频谱特定位置放置零点 汉明滤波器、布莱克曼滤波器 -
[1] 李德仁, 沈欣, 李迪龙, 等. 论军民融合的卫星通信、遥感、导航一体天基信息实时服务系统[J]. 武汉大学学报(信息科学版), 2017, 42(11): 1501-1505. [2] 杨元喜. 北斗卫星导航系统的进展、贡献与挑战[J]. 测绘学报, 2010, 39(1): 1-6. [3] 冯奇. 基于 V-OFDM 调制的卫星通信与导航一体化系统[D]. 南京: 南京大学, 2017. [4] KAISER T, FENG Z, DIMITORV E. An overview of Ultra-Wide-Band systems with MIMO[J]. Proceedings of the IEEE, 2009, 97(2): 285-312. DOI: 10.1109/JPROC.2008.2008784 [5] GOSH A, MEADER A, BAKER M, et al. 5G evolution: a view on 5G cellular technology beyond 3GPP release 15[J]. IEEE access, 2019, 7(99): 127639-127651. DOI: 10.1109/ACCESS.2019.2939938 [6] 李晓柏, 杨瑞娟, 程伟. 基于Chirp信号的雷达通信一体化研究[J]. 雷达科学与技术, 2012, 10(2): 180-186. DOI: 10.3969/j.issn.1672-2337.2012.02.012 [7] 刘志鹏. 雷达通信一体化波形分离算法研究[J]. 中国电子科学研究院学报, 2013, 8(5): 481-485. DOI: 10.3969/j.issn.1673-5692.2013.05.009 [8] 姜孟超, 廖桂生, 杨志伟, 等. 一种 NLFM-CPM雷达通信一体化信号设计[J]. 系统工程与电子技术, 2019, 49(1): 35-42. [9] MA D Y, SHLEZINGER N, HUANG T Y, et al. Joint radar-communication strategies for autonomous vehicles: combining two key automotive technologies[J]. IEEE signal processing magazine, 2020, 37(4): 85-97. DOI: 10.1109/MSP.2020.2983832 [10] MIZUI K, UCHIDA M, NAKAGAWA M. Vehicle-to-vehicle communication and ranging system using spread spectrum technique (proposal of boomerang transmission system)[C]// IEEE the 43rd Vehicular Technology Conference, 1993. [11] TIGREK R F, HEIJ W J A D, GENDEREN P V. OFDM signals as the radar waveform to solve doppler ambiguity[J]. IEEE transactions on aerospace and electronic systems, 2012, 48(1): 130-143. DOI: 10.1109/TAES.2012.6129625 [12] STURM C, ZWICK T, WIESBECK W. An OFDM system concept for joint radar and communications operations[C]// IEEE the 69th Vehicular Technology Conference, 2009. [13] ELLINGER J, ZHANG Z P, WICKS M, et al. Multi-carrier radar waveforms for communications and detection[J]. IET radar sonar & navigation, 2017, 11(3): 444-452. DOI: 10.1049/iet-rsn.2016.0244 [14] BETZ J W. Binary offset carrier modulation for radio navigation[J]. Navigation-journal of the institute of navigation, 2001, 48(4): 227-246. DOI: 10.1002/j.2161-4296.2001.tb00247.x [15] 姚铮, 陆明泉. 新一代卫星导航系统信号设计原理与实现技术[M]. 北京: 电子工业出版社, 2016. [16] PROAKIS J G, SALEHI M. Digital communications[M]. New York: McGraw-Hill, 2008.