BDS-3 precise point positioning ambiguity resolution and performance assessment
-
摘要: 基于国际GNSS服务(IGS)提供的MGEX (Multi-GNSS Experiment)的观测数据,对北斗三号卫星导航系统(BDS-3)相位小数偏差(UPD)进行估计,进一步开展基于精密单点定位(PPP)的浮点/固定解试验,分析评估其定位性能. 结果表明:北斗卫星导航系统(BDS)定位精度与GPS大致相当; BDS-3 PPP在东(E)、北(N)、天顶(U)三个方向上浮点解的平均均方根(RMS)分别为1.4 cm、1.0 cm、1.6 cm;通过模糊度固定算法,可将三个方向的定位精度提升至0.9 cm、0.7 cm、1.4 cm.
-
关键词:
- 北斗卫星导航系统(BDS) /
- 精密单点定位(PPP) /
- 模糊度固定算法 /
- 相位小数偏差(UPD) /
- 定位精度
Abstract: Based on the IGS-MGEX observation data, the BeiDou-3 Navigation Satellite System (BDS-3) satellite uncalibrated phase delay (UPD) is estimated. In order to analyze the performance current BDS-3 constellation, both the float and fixed precise point positioning (PPP) are tested. The results show that the accuracy of BDS-3 PPP is roughly equivalent to that of GPS. The average root mean square (RMS) of BDS-3 float PPP solutions are 1.4 cm, 1.0 cm, and 1.6 cm for east (E), north (N), and up (U) direction, while the accuracy can be improved to 0.9 cm, 0.7 cm, and 1.4 cm respectively with ambiguity resolution. -
表 1 UPD估计和PPP计算处理策略
类别 处理策略 观测值 非差原始观测值 组合类型 无电离层组合 信号选择 B1+B3 卫星轨道和钟差 武汉大学IGS分析中心产品 采样率/s 30 截止高度角/(°) 7 观测值加权方式 高度角定权 天线相位缠绕 模型改正[20] 对流层延迟 采用Saastamoinen模型和GMF函数改正
ZTD估计采用分段常数,梯度为2 h测站坐标 白噪声逐历元估计 接收机钟差 白噪声逐历元估计 表 2 8个PPP测站基本信息
测站 国家 纬度 经度 接收机类型 天线类型 HARB 南非 25.9°S 27.7°E SEPT POLARX5TR TRM59800.00 NONE HERS 英国 50.9°N 0.3°E SEPT POLARX5TR LEIAR25.R3 NONE KIR8 瑞典 67.9°N 21.1°E TRIMBLE ALLOY LEIAR25.R3 LEIT KOUR 法属圭亚那 5.2°N 52.8°W SEPT POLARX5 SEPCHOKE_B3E6 NONE ONSA 瑞典 57.4°N 11.9°E SEPT POLARX5TR AOAD/M_B OSOD TOW2 澳大利亚 19.3°S 147.1°E SEPT POLARX5 LEIAR25.R3 NONE VIS0 瑞典 57.7°N 18.4°E SEPT POLARX5 AOAD/M_B OSOD WUH2 中国 30.5°N 114.4°E JAVAD TRE_3 JAVRINGANT_GST NONE 表 3 BDS-3 PPP和GPS PPP E、N、U三个分量上的平均RMS
cm E N U 测站 浮点解 固定解 浮点解 固定解 浮点解 固定解 BDS-3 GPS BDS-3 GPS BDS-3 GPS BDS-3 GPS BDS-3 GPS BDS-3 GPS HARB 1.5 1.2 0.9 0.8 0.5 0.8 0.5 0.5 2.0 1.8 1.3 1.0 HERS 1.2 0.7 0.6 0.5 0.6 0.7 0.6 0.6 2.0 0.8 2.0 0.6 KIR8 1.0 0.6 0.7 0.5 1.4 0.3 0.8 0.2 1.1 1.7 0.9 0.9 KOUR 0.8 1.4 0.7 0.8 1.2 0.5 0.9 0.5 2.2 3.9 1.6 3.6 ONSA 1.5 0.7 0.8 0.4 0.3 0.3 0.3 0.2 1.0 1.1 0.8 0.6 TOW2 0.9 0.8 0.8 0.6 1.2 0.4 0.7 0.3 1.5 1.4 1.3 0.8 VIS0 2.3 1.1 1.7 0.6 1.2 0.6 0.7 0.7 1.5 1.5 1.4 0.8 WUH2 1.6 1.0 0.8 0.5 1.3 0.7 0.8 0.6 1.8 1.5 1.5 0.9 -
[1] China Satellite Navigation Office. BeiDou Navigation Satellite System signal in space interface control document open service signal B2b (Beta Version)[R]. Beijing, 2019. [2] 杨元喜, 李金龙, 王爱兵, 等. 北斗区域卫星导航系统基本导航定位性能初步评估[J]. 中国科学:地球科学, 2014, 44(1): 71-81. [3] ZUMBERGE J F, HEFLIN M B, JEFFERSON D C, et al. Precise point positioning for the efficient and robust analysis of GPS data from large networks[J]. Journal of geophysical research, 1997, 102(B3): 5005-5017. DOI: 10.1029/96jb03860 [4] MENG X L, WANG J, HAN H Z. Optimal GPS/accelerometer integration algorithm for monitoring the vertical structural dynamics[J]. Journal of applied geodesy, 2014, 8(4): 265-272. DOI: 10.1515/jag-2014-0024 [5] 张宝成, 欧吉坤, 袁运斌, 等. 利用非组合精密单点定位技术确定斜向电离层总电子含量和站星差分码偏差[J]. 测绘学报, 2011, 40(4): 447-453. [6] 张小红, 刘经南, FORSBERG R. 基于精密单点定位技术的航空测量应用实践[J]. 武汉大学学报(信息科学版), 2006, 31(1): 19-22. [7] 张小红, 李盼, 左翔. 固定模糊度的精密单点定位几何定轨方法及结果分析[J]. 武汉大学学报(信息科学版), 2013, 38(9): 1009-1013. [8] 施闯, 赵齐乐, 李敏, 等. 北斗卫星导航系统的精密定轨与定位研究[J]. 中国科学:地球科学, 2012, 42(6): 854-861. [9] 马瑞, 施闯. 基于北斗卫星导航系统的精密单点定位研究[J]. 导航定位学报, 2013, 1(2): 7-10. DOI: 10.3969/j.issn.2095-4999.2013.02.002 [10] WANNINGER L, BEER S. BeiDou satellite-induced code pseudorange variations: diagnosis and therapy[J]. GPS solutions, 2015, 19(4): 639-648. DOI: 10.1007/s10291-014-0423-3 [11] LI P, ZHANG X H, REN X D, et al. Generating GPS satellite fractional cycle bias for ambiguity-fixed precise point positioning[J]. GPS solutions, 2016, 20(4): 771-782. DOI: 10.1007/s10291-015-0483-z [12] LI X X, LI X, YUAN Y Q, et al. Multi-GNSS phase delay estimation and PPP ambiguity resolution: GPS, BDS, GLONASS, Galileo[J]. Journal of geodesy, 2018, 92(6): 579-608. DOI: 10.1007/s00190-017-1081-3 [13] KOUBA J, HÉROUX P. Precise point positioning using IGS orbit and clock products[J]. GPS solutions, 2001, 5(2): 12-28. DOI: 10.1007/PL00012883 [14] KOUBA J. A guide to using International GNSS Service (IGS) products[EB/OL]. (2009-04-23)[2022-01-15]. Maryland biological stream survey data versar inc, 2009, 4(3): 106. http://www.acc.igs.org/UsingIGSProductsVer21.pdf [15] GE M, GENDT G, ROTHACHER M, et al. Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations[J]. Journal of geodesy, 2008, 82(7): 389-399. DOI: 10.1007/s00190-007-0187-4 [16] MELBOURNE W G. The case for ranging in GPS-based geodetic systems[C]//The First International Symposium on Precise Positioning with the Global Positioning System, Rockville, 1985: 373–386. [17] 李昕, 袁勇强, 张柯柯, 等. 联合GEO/IGSO/MEO的北斗PPP模糊度固定方法与试验分析[J]. 测绘学报, 2018, 47(3): 324-331. DOI: 10.11947/j.AGCS.2018.20170341 [18] RIZOS C, MONTENBRUCK O, WEBER R, et al. The IGS MGEX experiment as a milestone for a comprehensive Multi-GNSS service[C]// ION Pacific PNT Conference, Honolulu, 2013: 289-295. [19] WU J T, WU S C, HAJJ G A, et al. Effects of antenna orientation on GPS carrier phase[J/OL]. [2022-01-15]. Manuscripta geodaetica, 1992, 18(2): 91-98. http://adsabs.harvard.edu/abs/1992asdy.conf.1647W