The quality control algorithm of comprehensive corrections in augmented PPP algorithm of observation domain
-
摘要: 若全球卫星导航系统(GNSS)观测值域综合改正数中存在粗差或周跳则不可避免地会影响精密单点定位(PPP)增强的定位结果. 针对综合改正数中可能存在的异常,对综合改正数质量控制方法开展研究并提出异常识别与控制算法. 该算法根据综合改正数特点,利用经过频间和二阶历元间差分后的综合改正数组合值采用中位数法进行异常识别与定位,并对使用该异常值的卫星采用模糊度重新初始化、降权或剔除方法进行控制处理,以减少异常值对结果的影响. 以平均边长为26 km的部分香港连续运行参考站(CORS)组成的参考网以及科廷大学提供的零基线数据对该方法验证,结果表明:对30 s采样间隔的数据该方法能够有效探测出差分组合值中大部分1周以上的较大异常和部分1周以内的异常,有效控制部分异常值对定位结果的影响.
-
关键词:
- 全球卫星导航系统(GNSS) /
- 区域增强精密单点定位(PPP) /
- 观测值域综合改正数 /
- 数据预处理 /
- 质量控制
Abstract: If there are gross errors or cycle slips in the Global Navigation Satellite System (GNSS) comprehensive corrections in observation space representation, it will inevitably affect precise point positioning (PPP) augmented performance. Aiming at the possible anomalies in the comprehensive corrections, a quality control algorithm for the comprehensive corrections was studied and an algorithm for identifying and controlling outliers was proposed. According to the characteristics of the comprehensive corrections, the median absolute deviation was used to identify and locate the outliers for the combined value of comprehensive corrections after inter-frequency difference and second-order inter-epoch. The satellites with outliers used were control by the means of ambiguity reinitialization, weight reduction or elimination to reduce the impact of outliers on the results. The method was validated with a reference network composed of some Hong Kong continuously operating reference stations (CORS) with an average side length of 26 km and zero baseline data from Curtin University. The results showed that the method can effectively detect most of the large anomalies more than 1 cycle and some anomalies within 1 cycle n the value of the differential combination, and effectively control the influence of some outliers on the positioning results. -
表 1 异常值探测情况
粗差
大小/周GPS时 卫星 差分组
合值/周阈值
上限/周阈值
下限/周是否探测
出异常0.5 04:00:00 G28 0.464 0.357 −0.371 是 12:00:00 G13 0.515 0.241 −0.243 是 20:00:00 G29 0.520 0.210 −0.207 是 2.0 04:00:00 G28 1.960 0.357 −0.371 是 12:00:00 G13 2.015 0.241 −0.243 是 20:00:00 G29 2.022 0.210 −0.207 是 -
[1] HUBER P J. Robust estimation of a location parameter[J]. The annals of mathematical statistics, 1964, 35(1): 73-101. DOI: 10.1007/978-1-4612-4380-9_35 [2] HEIN G. Status, perspectives and trends of satellite navigation[J]. Satellite navigation, 2020, 1(1): 22. DOI: 10.1186/s43020-020-00023-x [3] GE M R, DOUSA J, LI X X, et al. A novel real-time precise positioning service system: global precise point positioning with regional augmentation[J]. Journal of global positioning systems, 2012, 11(1): 2-10. DOI: 10.5081/jgps.11.1.2 [4] 张小红, 李星星, 李盼. GNSS精密单点定位技术及应用进展[J]. 测绘学报, 2017, 46(10): 1399-1407. DOI: 10.11947/j.AGCS.2017.20170327 [5] 张小红, 胡家欢, 任晓东. PPP/PPP-RTK新进展与北斗/GNSS PPP定位性能比较[J]. 测绘学报, 2020, 49(9): 1084-1100. DOI: 10.11947/j.AGCS.2020.20200328 [6] 张小红, 马福建. 低轨导航增强GNSS发展综述[J]. 测绘学报, 2019, 48(9): 5-19. DOI: 10.11947/j.AGCS.2019.20190176 [7] 周江文. 经典误差理论与抗差估计[J]. 测绘学报, 1989, 18(2): 115-120. DOI: 10.3321/j.issn:1001-1595.1989.02.005 [8] 杨元喜. 抗差估计理论及其应用[M]. 北京: 八一出版社, 1993. [9] YANG Y X, CHENG M K, SHUM C K, et al. Robust estimation of systematic errors of satellite laser range[J]. Journal of geodesy, 1999, 73(7): 345-349. DOI: 10.1007/s001900050252 [10] 杨元喜. 自适应动态导航定位 [M]. 北京: 测绘出版社, 2006. [11] 仝海波, 张国柱. 改进M估计的抗多个粗差定位解算方法[J]. 测绘学报, 2014, 43(4): 366-371. DOI: 10.13485/j.cnki.11-2089.2014.0055 [12] 王潜心, 徐天河, 许国昌. 粗差检测与抗差估计相结合的方法在动态相对定位中的应用[J]. 武汉大学学报(信息科学版), 2011, 36(4): 476-480. [13] TU R, LIU J H, LU C X, et al. The comparison and analysis of BDS NRTK between DD and UD models [J]. Navigation journal of the institute of navigation, 2017, 65(2): 275-285. DOI: 10.1002/navi.226 [14] 范丽红, 王利, 张明, 等. 基于MW与STPIR组合的周跳探测与修复方法研究[J]. 武汉大学学报(信息科学版), 2015, 40(6): 790-794. [15] 李林阳, 吕志平, 崔阳, 等. 伪距相位和无几何相位组合探测与修复多频周跳的比较[J]. 大地测量与地球动力学, 2015, 35(3): 396-400. [16] 吴静. 利用中位数的GPS卫星钟跳探测方法[J]. 测绘科学, 2015, 40(6): 36-41. DOI: 10.16251/j.cnki.1009-2307.2015.06.008 [17] 杨元喜, 李金龙, 王爱兵, 等. 北斗区域卫星导航系统基本导航定位性能初步评估[J]. 中国科学:地球科学, 2014, 44(1): 72-81. [18] 王甫红, 刘基余. 星载GPS伪距测量数据质量分析[J]. 测绘科学技术学报, 2007, 24(2): 97-99. DOI: 10.3969/j.issn.1673-6338.2007.02.006 [19] 戴吾蛟. GPS精密动态变形监测的数据处理理论与方法研究[D]. 长沙: 中南大学, 2007. [20] JIN S G, WANG J, PARK P H. An improvement of GPS height estimations: stochastic modeling[J]. Earth, planets and space, 2005, 57(4): 253-259. DOI: 10.1186/BF03352561