Reseacher on eLoran noise error model and generation method
-
摘要: 增强罗兰(eLoran)系统具备与全球卫星导航系统(GNSS)的互补性,使其成为最佳备份系统. 接收机通过测量到达时间(TOA)进行定时与定位,噪声是影响eLoran信号TOA精度的重要因素,而噪声中高斯白噪声(WGN)又是普遍存在的. 本文首先基于最大似然估计(MLE)方法推导了WGN下的TOA误差模型,其次采用线性同余法与Box-Muller变换对法相结合生成WGN,仿真分析了WGN的时、频域特性,最后利用产生的噪声模拟出TOA测量误差,并与理论TOA模型进行比较. 结果表明:理论误差模型与仿真TOA值误差吻合,验证该研究的TOA测量误差模型和产生噪声的正确性,研究成果可为eLoran信号的TOA误差模型和模拟器中噪声产生提供参考,促进eLoran系统应用发展.
-
关键词:
- 增强罗兰(eLoran)系统 /
- 均匀随机数 /
- 高斯随机数 /
- 载波相位 /
- 到达时间(TOA)分析
Abstract: The enhanced Loran (eLoran) system is complementary to the Global Navigation Satellite System (GNSS), making it the best backup system. The receiver performs timing and positioning by measuring time of arrival (TOA). Noise is an important factor affecting the TOA accuracy of eLoran signal, and white Gaussian noise (WGN) is ubiquitous in noise. This paper based on the maximum likelihood estimation method was deduced under WGN of TOA error model, then using the method of linear congruence and Box - Muller transform method to generate WGN, the simulation analysis of the time and frequency domain properties of a gaussian white noise, the use of noise simulating TOA measurement error, and comparing with theoretical TOA model, The results show that the theoretical error model is consistent with the simulation TOA value error, which verifies the correctness of the TOA measurement error model and noise generation studied in this paper. The research results of this paper can provide reference for the TOA error model of eLoran signal and noise generation in the simulator, and promote the application development of eLoran system. -
[1] 甄卫民, 丁长春. 陆基远程和超远程无线电导航系统发展现状与趋势[J]. 全球定位系统, 2019, 44(1): 10-15. DOI: 10.13442/j.gnss.1008-9268.2019.01.002 [2] 李实锋. eLoran信号接收方法与技术研究[D]. 北京: 中国科学院国家授时中心, 2013. [3] 李云. eLoran差分系统与关键技术研究[D]. 北京: 中国科学院国家授时中心, 2020. [4] YAN W H, DONG M, LI S F, et al. An eLoran signal cycle identification method based on joint time-frequency domain[J]. Remote sensing, 2022, 14(2): 250. DOI: 10.3390/rs14020250 [5] 国家技术监督局 GB/T 14379-1993, 罗兰C系统通用技术条件[S]. 1993. [6] 海波, 王玉荣, 林玉琼, 等. 一种罗兰C信号产生器[P]. 北京市: CN113687390A, 2021-11-23. [7] PROAKIS J G, SALEHI M. Digital communications[J]. 2008. [8] 闫温合, 华宇, 李实锋, 等. 增强型罗兰信号非系统干扰测量误差模型研究[J]. 时间频率学报, 2021, 44(4): 300-309. DOI: 10.13875/j.issn.1674-0637.2021-04-0300-10 [9] 王鹏宇, 翟丽丽, 石巨峰. 基于FPGA的参数可调高斯白噪声发生器的设计[J]. 舰船电子对抗, 2013, 36(4): 113-115,120. DOI: 10.3969/j.issn.1673-9167.2013.04.029 [10] L'ECUYER P. Efficient and portable combined random number generators[J]. Communications of the ACM, 1988, 31(6): 742-751. DOI: 10.1145/62959.62969 [11] KNUTH D E. Art of computer programming, volume 2: Seminumerical algorithms[M]. Addison-Wesley Professional, 2014. [12] 蔡坤宝, 王成良, 陈曾汉. 产生标准高斯白噪声序列的方法[J]. 中国电机工程学报, 2004, 24(12): 211-215. DOI: 10.3321/j.issn:0258-8013.2004.12.038 [13] BOX G E P, MULLER M E. A note on the generation of random normal deviates[J]. The annals of mathematical statistics, 1958, 29(2): 610-611. DOI: 10.1214/aoms/1177706645 [14] MARSAGLIA G, BRAY T A. A convenient method for generating normal variables[J]. SIAM review, 1964, 6(3): 260-264. DOI: 10.1137/1006063