留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下导航定位技术综述

张涛 夏茂栋 张佳宇 朱永云 童金武

张涛, 夏茂栋, 张佳宇, 朱永云, 童金武. 水下导航定位技术综述[J]. 全球定位系统, 2022, 47(4): 1-16. doi: 10.12265/j.gnss.2022094
引用本文: 张涛, 夏茂栋, 张佳宇, 朱永云, 童金武. 水下导航定位技术综述[J]. 全球定位系统, 2022, 47(4): 1-16. doi: 10.12265/j.gnss.2022094
ZHANG Tao, XIA Maodong, ZHANG Jiayu, ZHU Yongyun, TONG Jinwu. Review of underwater navigation and positioning technology[J]. GNSS World of China, 2022, 47(4): 1-16. doi: 10.12265/j.gnss.2022094
Citation: ZHANG Tao, XIA Maodong, ZHANG Jiayu, ZHU Yongyun, TONG Jinwu. Review of underwater navigation and positioning technology[J]. GNSS World of China, 2022, 47(4): 1-16. doi: 10.12265/j.gnss.2022094

水下导航定位技术综述

doi: 10.12265/j.gnss.2022094
基金项目: 国家自然科学基金 (52071080);中央高校基本科研业务费专项资金 (2242021K1G008,2242022K30017, 2242022K30018);东南大学微惯性仪表与先进导航技术教育部重点实验室(B类) 开放基金资助项目(SEU-MIAN-202002);南京工程学院引进人才科研启动基金项目(YKJ202043);江苏省研究生实践创新基金(SJCX21_0028)
详细信息
    作者简介:

    张涛:(1980—),男,教授,研究方向为惯性导航与AUV定位

    夏茂栋:(1993—),男,博士,研究方向为SINS/USBL组合导航和无人系统编队-包含控制

    张佳宇:(1994—),女,博士,研究方向为地形辅助惯性导航

    朱永云:(1991—),男,助理研究员,研究方向为惯性基组合导航、水下组合定位技术、农业装备作业状态实时监测及作业过程智能控制

    童金武:(1983—),男,讲师,研究方向为水下声学导航、多源组合导航、无人载体自主控制、服务机器人控制、高精度测量、人工智能与精准医学等领域研究

    通信作者:

    张涛 E-mail: zhangtao22@seu.edu.cn

  • 中图分类号: P228.4

Review of underwater navigation and positioning technology

  • 摘要: 自主式水下航行器(AUV)作为海洋资源的开发与利用的主要载体,执行任务时需要准确的定位信息. 现有AUV主要采用捷联惯性导航系统(SINS)为主,声学导航和地球物理场匹配导航技术为辅的导航方式. 本文简述水下导航方式基本原理、优缺点和适用场景;探讨各类导航方式包含的关键技术,提高组合导航精度和稳定性. 通过分析现阶段存在问题,展望水下导航的未来发展趋势.

     

  • 图  1  DVL波束示意图

    图  2  SINS/DVL组合模型

    图  3  水声定位示意图

    图  4  SINS/USBL组合模型

    图  5  地球物理场辅助INS示意图

    表  1  DVL设备性能参数

    型号
    度/(mm·s−1)
    量程/m
    测速
    范围/(m·s−1)
    工作
    频率/kHz
    Pathfinder0.3%v±10300±15300
    0.2%v±10100±15600
    SeaPILOT0.7%v±2300±20300
    0.25%v±2130±20600
    NavQuest3000.4%v±2300±10300
    0.2%v±1140±10600
    下载: 导出CSV

    表  2  水声定位系统分类

    类型LBLSBLUSBL
    基线长度100~6000 m1~100 m<1 m
    特点基元空间
    分布广
    基元布放于
    载体各处
    集成声学单元
    优点定位精度高
    作用范围广
    精度较高体积小
    携带方便
    安装灵活
    缺点操作繁琐
    更新频率低
    基元固定
    易受船体噪声影响
    定位精度低
    作用范围小
    适用对象大范围内
    高精度定位
    母船附近的
    水下机器人
    小型潜航器
    下载: 导出CSV

    表  3  水声定位设备性能参数

    型号定位
    精度/mm
    定向
    精度/(°)
    量程/m开角/(°)
    GAPS
    M7
    0.06% D±200.034000160
    Gyro-USBL
    8084-457
    0.04% D±15/7000180
    TrackLink
    5000
    0.3% D±300.155000/
    HiPAP
    602
    0.15% D±200.047000180
    µPAP
    201
    0.45% D±200.254000160
    下载: 导出CSV

    表  4  海洋重力仪设备性能参数

    型号精度
    /mGal
    量程
    /Gal
    漂移
    /(mGal/月)
    倾角
    /(°)
    GT-2M0.210003.00±45
    SEA III0.75003.00±35
    Chekan-AM0.4500//
    SAG0.22 000/任意
    ZL11-1A0.3/4.42/
    下载: 导出CSV

    表  5  插值法优缺点分析

    插值
    算法
    原理优点缺点
    距离幂次反比法一定的幂次加权求和模型简单
    计算量小
    精度低
    样条
    插值法
    多项式拟合模型简单
    适用于变化缓慢的区域
    在重力场变化剧烈的区域效果差
    克里金法对空间结构和参数进行无偏估计精度高计算量大,在边缘区域精度差
    Shepard二次曲面
    拟合
    模型简单
    计算量小
    精度仅比距离幂次反比法高
    样条
    插值法
    多项式拟合模型简单适用于变化缓慢的区域在重力场变化剧烈的区域效果差
    下载: 导出CSV

    表  6  地形探测设备技术参数

    型号精度/cm深度/m效率/(km2·h−1)
    CZMIL30.0 8035.30~88.20
    Sea Survey MS 4001.51500.01~10.10
    Edge Tech 41252.32002.70
    UCSB19.0 70/
    下载: 导出CSV
  • [1] 游亚戈, 李伟, 刘伟民, 等. 海洋能发电技术的发展现状与前景[J]. 电力系统自动化, 2010, 34(14): 1-12.
    [2] 施伟勇, 王传崑, 沈家法. 中国的海洋能资源及其开发前景展望[J]. 太阳能学报, 2011, 32(6): 913-923.
    [3] 郭建科, 董梦如, 郑苗壮, 等. 海洋命运共同体视域下国际海洋资源战略价值评估理论与方法[J]. 自然资源学报, 2022, 37(4): 985-998.
    [4] 马红, 张庆伟. 习近平关于海洋重要论述的哲学意蕴[J]. 西南林业大学学报(社会科学), 2022, 6(2): 38-42.
    [5] 贾宇, 张平. 习近平海洋经济发展重要论述内涵探析[J]. 大连海事大学学报(社会科学版), 2021, 20(6): 1-7.
    [6] 钟宏伟. 国外水下无人航行器装备与技术现状及展望[J]. 水下无人系统学报, 2017, 25(4): 215-225.
    [7] 刘洋, 陈练, 苏强, 等. 水下无人航行器装备技术发展与作战应用研究[J]. 舰船科学技术, 2020, 42(12): 1-7. DOI: 10.3404/j.issn.1672-7649.2020.12.001
    [8] 冯景祥, 姚尧, 潘峰, 等. 国外水下无人装备研究现状及发展趋势[J]. 舰船科学技术, 2021, 43(12): 1-8.
    [9] 梁益丰, 许江宁, 吴苗, 等. AUV 导航技术概述[J]. 舰船科学技术, 2020, 42(15): 152-156,171.
    [10] PAULL L, SAEEDI S, SETO M, et al. AUV navigation and localization: a review[J]. IEEE journal of oceanic engineering, 2014, 39(1): 131-149. DOI: 10.1109/JOE.2013.2278891
    [11] 黄玉龙, 张勇刚, 赵玉新. 自主水下航行器导航方法综述[J]. 水下无人系统学报, 2019(3): 232-253. DOI: 10.11993/j.issn.2096-3920.2019.03.002
    [12] SAEED N, CELIK A, AL-NAFFOURI T Y, et al. Underwater optical wireless communications, networking, and localization: a survey[J]. Ad hoc networks, 2019(94): 101935. DOI: 10.1016/j.adhoc.2019.101935
    [13] 韩孟祥. 基于蓝绿激光的高速水下无线通信实验研究[D]. 北京: 北京邮电大学, 2019.
    [14] 尹伟伟, 郭士荦. 非卫星水下导航定位技术综述[J]. 舰船电子工程, 2017, 37(3): 8-11. DOI: 10.3969/j.issn.1672-9730.2017.03.003
    [15] 王轲, 周兴华, 唐秋华, 等. 水下导航定位技术在大洋科考调查中的应用[J]. 海洋测绘, 2021, 41(4): 65-69. DOI: 10.3969/j.issn.1671-3044.2021.04.014
    [16] 严恭敏, 翁浚. 捷联惯导算法与组合导航原理[M]. 西安: 西北工业大学出版社, 2019: 78.
    [17] 王健, 鲁金瑞, 郑栋, 等. 水下复杂环境下基于SINS/USBL/DVL多源信息融合的组合导航算法[J]. 导航定位与授时, 2022, 9(1): 76-84. DOI: 10.19306/j.cnki.2095-8110.2022.01.009
    [18] 孙大军, 郑翠娥, 张居成, 等. 水声定位导航技术的发展与展望[J]. 中国科学院院刊, 2019, 34(3): 331-338. DOI: 10.3969/j.issn.2095-4999.2022.02.001
    [19] 童金武, 徐晓苏, 张涛, 等. 超短基线安装误差对定位精度影响分析及其标定技术研究[J]. 导航定位与授时, 2020, 7(2): 18-27.
    [20] 张涛, 翁铖铖, 李默涵, 等. 一种SINS/超短基线组合定位系统安装误差标定算法[J]. 中国惯性技术报, 2019, 27(3): 349-356.
    [21] 陆一, 魏东岩, 纪新春, 等. 地磁定位方法综述[J]. 导航定位与授时, 2022, 9(2): 118-130. DOI: 10.19306/j.cnki.2095-8110.2022.02.015
    [22] 王汝鹏. AUV地形匹配导航初始定位研究[D]. 哈尔滨工程大学, 2019.
    [23] WANG H B, WU L, CHAI H, et al. Technology of gravity aided inertial navigation system and its trial in South China Sea[J]. IET radar, sonar and navigation, 2016, 10(5): 862-869. DOI: 10.1049/iet-rsn.2014.0419
    [24] 靳凯迪, 柴洪洲, 宿楚涵, 等. DVL/SINS组合导航技术发展现状及趋势[J]. 导航定位学报, 2022, 10(2): 1-12,92.
    [25] 王博, 刘泾洋, 刘沛佳. SINS/DVL组合导航技术综述[J]. 导航定位学报, 2020, 8(3): 1-6,22. DOI: 10.3969/j.issn.2095-4999.2020.03.001
    [26] CHANG L B, LI Y, XUE B Y. Initial alignment for a doppler velocity log-aided strapdown inertial navigation system with limited information[J]. IEEE/ASME transactions on mechatronics, 2017, 22(1): 329-338. DOI: 10.1109/TMECH.2016.2616412
    [27] LI W L, LING Y, ZHANG L D, et al. A robust method for alignment calibration of an inertial measurement unit(imu) and doppler sensors[J]. Lasers in engineering, 2016, 34(1): 93-106.
    [28] LI W L, WU W Q, WANG J L, 等. A novel backtracking navigation scheme for autonomous underwater vehicles[J]. Measurement, 2014 (47): 496-504. DOI: 10.1016/j.measurement.2013.09.022

    LI W L, WU W Q, WANG J L, et al. A novel backtracking navigation scheme for autonomous underwater vehicles[J]. Measurement, 2014(47): 496-504. DOI: 10.1016/j.measurement.2013.09.022
    [29] LI K, LING Y Y, KAICHEN S. A fast in-motion alignment algorithm for DVL aided SINS[J]. Mathematical problems in engineering, 2014: 1-12. DOI: 10.1155/2014/593692
    [30] CHANG L B, HU B Q. Robust initial attitude alignment for SINS/DVL[J]. IEEE/ASME transactions on mechatronics, 2018, 23(4): 2016-2021. DOI: 10.1109/TMECH.2018.2834917
    [31] XU X, GUI J, SUN Y F, et al. A robust in-motion alignment method with inertial sensors and doppler velocity log[J]. IEEE transactions on instrumentation and measurement, 2021(99): 1-1. DOI: 10.1109/TIM.2020.3011873
    [32] YAO Y Y, XU X S, ZHU Y Y, et al. In-motion coarse alignment method for SINS/DVL with the attitude dynamics[J]. ISA transactions, 2020, 105(6): 377-386. DOI: 10.1016/j.isatra.2020.05.033
    [33] JOYCE T M. In situ calibration of shipboard ADCPs[J]. Journal of atmospheric and oceanographic technology, 1989, 6(1): 169-172. DOI: 10.1175/1520-0426(1989)006<0169:OISOSA>2.0.CO;2
    [34] MÜNCHOW A, COUGHRAN C S, HENDERSHOTT M C, et al. Performance and calibration of an acoustic doppler current profiler towed below the surface[J]. Journal of atmospheric and oceanic technology, 1995, 12(5): 435-444. DOI: 10.1175/1520-0426(1995)012<0435:PACOAA>2.0.CO;2
    [35] KINSEY J C, WHITCOMB L L. Adaptive identification on the group of rigid-body rotations and its application to underwater vehicle navigation[J]. IEEE transactions on robotics, 2007, 23(1): 124-136. DOI: 10.1109/TRO.2006.886829
    [36] KINSEY J C, WHITCOMB L L. In situ alignment calibration of attitude and doppler sensors for precision underwater vehicle navigation: theory and experiment[J]. IEEE journal of oceanic engineering, 2007, 32(2): 286-299. DOI: 10.1109/JOE.2007.893686
    [37] KINSEY J C, WHITCOMB L L. Towards in-situ calibration of gyro and Doppler navigation sensors for precision underwater vehicle navigation[C]//IEEE International Conference on Robotics and Automation, 2002. DOI: 10.1109/ROBOT.2002.1014364
    [38] TANG K H, WANG J L, LI W, et al. A novel INS and doppler sensors calibration method for long range underwater vehicle navigation[J]. Sensors, 2013, 13(11): 14583-14600. DOI: 10.3390/s131114583
    [39] WANG D, XU X S, YANG Y, et al. A quasi-newton quaternions calibration method for DVL error aided GNSS[J]. IEEE transactions on vehicular technology, 2021, 70(3): 2465-2477. DOI: 10.1109/TVT.2021.3059755
    [40] 朱春云, 庄广琛, 宋雅兰, 等. DVL安装误差角估计方法在水下组合导航系统中的应用[J]. 中国惯性技术学报, 2011, 19(1): 75-78.
    [41] XU B, WANG L Z, LI S X, et al. A novel calibration method of SINS/DVL integration navigation system based on quaternion[J]. IEEE sensors journal, 2020, 20(16): 9567-9580. DOI: 10.1109/JSEN.2020.2988500
    [42] TAL A, KLEIN I, KATZ R. Inertial navigation system/doppler velocity log (INS/DVL) fusion with partial DVL measurements[J]. Sensors, 2017, 17(2): 415. DOI: 10.3390/s17020415
    [43] KARIMI M, BOZORG M, KHAYATIAN A R. A comparison of DVL/INS fusion by UKF and EKF to localize an autonomous underwater vehicle[C]//International Conference on Robotics and Mechatronics, 2013. DOI: 10.1109/ICRoM.2013.6510082
    [44] GUO Y, WU M P, TANG K H, et al. Square-root unscented information filter and its application in SINS/DVL integrated navigation[J]. Sensors, 2018, 18(7): 1-19. DOI: 10.3390/s18072069
    [45] GAO W, LI J C, ZHOU G T, et al. Adaptive Kalman filtering with recursive noise estimator for integrated SINS/DVL systems[J]. The journal of navigation, 2015, 68(1): 142-161. DOI: 10.1017/S0373463314000484
    [46] 王宏健, 李村, 么洪飞, 等. 基于高斯混合容积卡尔曼滤波的UUV自主导航定位算法[J]. 仪器仪表学报, 2015, 36(2): 254-261. DOI: 10.19650/j.cnki.cjsi.2015.02.002
    [47] DAVARI N, GHOLAMI A. An asynchronous adaptive direct Kalman filter algorithm to improve underwater navigation system performance[J]. IEEE sensors journal, 2017, 17(4): 1061-1068. DOI: 10.1109/JSEN.2016.2637402
    [48] YAO Y Y, XU X S, LI Y, et al. A hybrid IMM based INS/DVL integration solution for underwater vehicles[J]. IEEE transactions on vehicular technology, 2019, 68(6): 5459-5470. DOI: 10.1109/TVT.2019.2910397
    [49] HOU L H, XU X S, YAO Y Q, et al. An M-estimation-based improved interacting multiple model for INS/DVL navigation method[J]. IEEE sensors journal, 2022, 22(13): 13375-13386. DOI: 10.1109/JSEN.2022.3143316
    [50] ZHU Y X, CHENG X H, WANG L. A novel fault detection method for an integrated navigation system using gaussian process regression[J]. The journal of navigation, 2016, 1(4): 1-15. DOI: 10.1017/S0373463315001034
    [51] WANG D, XU X S, YAO Y Y, et al. A novel SINS/DVL tightly integrated navigation method for complex environment[J]. IEEE transactions on instrumentation and measurement, 2020, 69(7): 5183-5196. DOI: 10.1109/TIM.2019.2955187
    [52] ZHU Y, CHENG X H, HU J, et al. A novel hybrid approach to deal with DVL malfunctions for underwater integrated navigation systems[J]. Applied sciences, 2017, 7(8): 759. DOI: 10.3390/app7080759
    [53] KANG Y Y, ZHAO L, CHENG J H, et al. A novel grid SINS/DVL integrated navigation algorithm for marine application[J]. Sensors, 2018, 18(2): 364. DOI: 10.3390/s18020364
    [54] LIU P J, WANG B, DENG Z H, et al. INS/DVL/PS tightly coupled underwater navigation method with limited DVL measurements[J]. IEEE sensors journal, 2018, 18(7): 2994-3002. DOI: 10.1109/JSEN.2018.2800165
    [55] 孙大军, 郑翠娥, 钱洪宝, 等. 水声定位系统在海洋工程中的应用[J]. 声学技术, 2012, 31(2): 125-132. DOI: 10.3969/j.issn1000-3630.2012.02.003
    [56] 金博楠, 徐晓苏, 张涛, 等. 超短基线定位技术及在海洋工程中的应用[J]. 导航定位与授时, 2018, 5(4): 8-20.
    [57] 唐秋华, 吴永亭, 丁继胜, 等. 超短基线声学定位系统的校准技术研究[J]. 声学技术, 2006, 25(4): 281-287. DOI: 10.3969/j.issn.1000-3630.2006.04.003
    [58] 郑翠娥, 孙大军, 张殿伦, 等. 超短基线定位系统安装误差校准技术研究[J]. 计算机工程与应用, 2007, 43(8): 171-173. DOI: 10.3321/j.issn:1002-8331.2007.08.054
    [59] 郑翠娥, 孙大军, 张殿伦, 等. 超短基线声学定位系统安装误差精确校准[J]. 哈尔滨工程大学学报, 2007, 28(8): 894-898. DOI: 10.3969/j.issn.1006-7043.2007.08.012
    [60] CHEN H H. In-situ alignment calibration of attitude and ultrashort baseline sensors for precision underwater positioning[J]. Ocean engineering, 2008, 35(14): 1448-1462. DOI: 10.1016/j.oceaneng.2008.06.013
    [61] CHEN H H. The estimation of angular misalignments for ultra short baseline navigation systems. part I: numerical simulations[J]. Journal of navigation, 2013, 66(4): 561-578. DOI: 10.1017/S0373463313000222
    [62] CHEN H H. The estimation of angular misalignments for ultra short baseline navigation systems. part II: experimental results[J]. Journal of navigation, 2013, 66(5): 773-787. DOI: 10.1017/S0373463313000234
    [63] TONG J W, XU X X, ZHANG T. Study on installation error analysis and calibration of acoustic transceiver array based on SINS/USBL integrated system[J]. IEEE access, 2018(6): 66923-66939. DOI: 10.1109/ACCESS.2018.2878756
    [64] ZHU Y Y, ZHANG T, XU S Q, et al. A calibration method of USBL installation error based on attitude determination[J]. IEEE transactions on vehicular technology, 2020, 69(8): 8317-8328. DOI: 10.1109/TVT.2020.2995599
    [65] ZHANG L, ZHANG T, TONG J W, et al. A calibration method of ultrashort baseline installation error with large misalignment based on variational bayesian unscented Kalman filter[J]. Review of scientific instruments, 2020, 90(5): 055003. DOI: 10.1063/1.5088688
    [66] ZHAO L, KANG Y Y, CHENG J H, et al. A fault-tolerant polar grid SINS/DVL/USBL integrated navigation algorithm based on the centralized filter and relative position measurement[J]. Sensors, 2019, 19(18): 3899. DOI: 10.3390/s19183899
    [67] LEE P M, JUN B H, KIM K H, et al. Simulation of an inertial acoustic navigation system with range aiding for an autonomous underwater vehicle[J]. IEEE journal of oceanic engineering, 2007, 32(2): 327-345. DOI: 10.1109/JOE.2006.880585
    [68] 李守军, 陶春辉, 包更生. 基于卡尔曼滤波的INS/USBL水下导航系统模型研究[J]. 海洋技术, 2008, 27(3): 47-50. DOI: 10.3969/j.issn.1003-2029.2008.03.013
    [69] GENG Y R, SOUSA J B D. Hybrid derivative-free EKF for USBL/INS tightly-coupled integration in AUV[C]//International Conference on Autonomous and Intelligent Systems, 2010. DOI: 10.1109/AIS.2010.5547035
    [70] MORGADO M, OLIVEIRA P, SILVESTRE C. Tightly coupled ultrashort baseline and inertial navigation system for underwater vehicles: an experimental validation[J]. Journal of field robotics, 2013, 30(1): 142-170. DOI: 10.1002/rob.21442
    [71] MORGADO M, OLIVERIA P, SILVESTRE C, et al. USBL/INS tightly-coupled integration technique for underwater vehicles[C]// International Conference on Information Fusion, 2006. DOI: 10.1109/ICIF.2006.301607
    [72] MORGADO M, OLIVEIRA P, SILVESTRE C, et al. Embedded vehicle dynamics aiding for USBL/INS underwater navigation system[J]. IEEE transactions on control systems technology, 2013, 22(1): 322-330. DOI: 10.1109/TCST.2013.2245133
    [73] ZHANG L, ZHANG T, WEI H Y. A novel robust inertial and ultra-short baseline integrated navigation strategy under the influence of motion effect[C]//IEEE Transactions on Intelligent Transportation Systems, 2022: 1-12. DOI: 10.1109/TITS.2022.3168442
    [74] 陈磊. 复杂海洋噪声环境下近场源定位算法的仿真分析[D]. 长春: 吉林大学, 2015.
    [75] 车永刚, 张宁川, 赵宝庆. 几种经典海洋环境噪声谱分析[J]. 海洋测绘, 2014, 34(5): 46-49. DOI: 10.3969/j.issn.1671-3044.2014.05.012
    [76] XIA M D, ZHANG T, WANG J, et al, The fine calibration of the ultra-short baseline system with inaccurate measurement noise covariance matrix[C]// IEEE Transactions on Instrumentation and Measurement, 2022. DOI: 10.1109/TIM.2021.3132351
    [77] XU B, ZHANG J, RAZZAQI A A. A novel robust filter for outliers and time-varying delay on an SINS/USBL integrated navigation model[J]. Measurement science and technology, 2021, 32(1): 1-15. DOI: 10.1088/1361-6501/abaae9
    [78] WANG J, ZHANG T, JIN B N, et al. Student's t-Based robust Kalman filter for a SINS/USBL integration navigation strategy[J]. IEEE sensors journal, 2020, 20(10): 5540-5553. DOI: 10.1109/JSEN.2020.2970766
    [79] ZHANG T, WANG J, ZHANG L, et al. Student's t-based measurement uncertainty filter for SINS/USBL tightly integration navigation system[J]. IEEE transactions on vehicular technology, 2021, 70(9): 8627-8638. DOI: 10.1109/TVT.2021.3102085
    [80] GAO W, ZHAO B, G. ZHOU G T, et al. Improved artificial bee colony algorithm based gravity matching navigation method[J]. Sensors, 2014, 14(7): 12968-12989. DOI: 10.3390/s140712968
    [81] SANDELL D T, MULLER R D, SMITH W H F, et al. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure[J]. Science, 2014, 346(6205): 65-67. DOI: 10.1126/science.1258213
    [82] HARLAN R B. Eotvoes corrections for airborne gravimetry[J]. Marine geophysical research, 1968, 73(14): 4675-4769. DOI: 10.1029/JB073i014p04675
    [83] SMOLLER Y L, YURIST S S, GOLOVAN A A, et al. Using a multi antenna GPS receiver in the airborne gravimeter GT-2a for surveys in polar areas[J]. Gyroscopy navigation, 2015, 6(4): 299-304. DOI: 10.1134/S2075108715040100
    [84] OUYANG Y Z, DENG K L, LU X P, et al. Tests of multi-type airborne gravimeters and data analysis[J] Hydrographic surveying charting, 2013, 33(4): 6-11. DOI: 10.1002/adma.201301232
    [85] WAN X Y, RAN J J, JIN S G. Sensitivity analysis of gravity anomalies and vertical gravity gradient data for bathymetry inversion[J]. Marine geophysical research, 2019, 40(1): 87-96. DOI: 10.1007/s11001-018-9361-8
    [86] WAN X Y, YU J H, LIANG L, et al. Analysis of limitations on recovery of gravity field based on satellite gravity gradient data[J]. Geodesy and geodynamics, 2021, 12(1): 31-42. DOI: 10.1016/j.geog.2020.11.005
    [87] YUAN Y, GAO J Y, WU Z C, et al. Performance estimate of some prototypes of inertial platform and strapdown marine gravimeters[J]. Earth planets and space, 2020, 72(1): 72: 89. DOI: 10.1186/s40623-020-01219-w
    [88] 张京娟, 刘繁明, 郝燕玲. 重力场的克立格估值研究[J]. 哈尔滨工程大学学报, 2003, 24(3): 249-252. DOI: 10.3969/j.issn.1006-7043.2003.03.004
    [89] 徐遵义, 姜玉祥, 赵亮, 等. 改进的 Shepard 算法及其在重力异常插值中的应用[J]. 武汉大学学报(信息科学版), 2010, 35(4): 477-480.
    [90] 王博, 周明龙. 水下重力辅助导航适配区选取的研究进展[J]. 导航定位学报, 2020, 8(3): 32-39. DOI: 10.3969/j.issn.2095-4999.2020.03.005
    [91] 张驰, 李姗姗, 邢志斌, 等. 多特征值分析的重力辅助导航适配区选择方法[J]. 测绘科学技术学报, 2019, 36(1): 28-33.
    [92] 张璐, 武凛, 柴华, 等. 一种新的基于特征值融合的重力辅助导航适配区选择方法[J]. 导航与控制, 2018, 17(2): 32-40. DOI: 10.3969/j.issn.1674-5558.2018.02.005
    [93] WANG B, ZHU Y W, DENG Z H, et al. The Gravity matching area selection criteria for underwater gravity-aided navigation application based on the comprehensive characteristic parameter[J]. IEEE/ASME transactions on mechatronics, 2016, 21(6): 2935-2943. DOI: 10.1109/TMECH.2016.2587804
    [94] 马越原, 欧阳永忠, 曲政豪, 等. 基于模糊决策理论的重力辅助导航区域选择方法[J]. 海洋测绘, 2016, 36(6): 7-10. DOI: 10.3969/j.issn.1671-3044.2016.06.002
    [95] 文超斌, 王跃钢, 郭志斌, 等. 基于重力辅助导航误差分析的自适应介入匹配算法[J]. 中国惯性技术学报, 2014, 22(4): 514-518.
    [96] 宫京, 张崇猛, 周贤高, 等. 一种基于因子分析的重力适配区域选取方法[J]. 中国惯性技术学报, 2019, 27(6): 732-737.
    [97] WANG B, ZHOU M L, DENG Z H, et al. Sum vector-difference-based matching area selection method for underwater gravity-aided navigation[J]. IEEE access, 2019(7): 123616-123624. DOI: 10.1109/ACCESS.2019.2938413
    [98] WANG C L, WANG B, DENG Z H, et al. A delaunay triangulation-based matching area selection algorithm for underwater gravity-aided inertial navigation[J]. IEEE/ASME transactions on mechatronics, 2020, 26(2): 908-917. DOI: 10.1109/TMECH.2020.3012499
    [99] 周凌. 基于相关序列匹配的重力辅助导航算法精度研究[D]. 北京: 中国地质大学, 2021.
    [100] HAN Y R, WANG B, DENG Z H, et al. A combined matching algorithm for underwater gravity-aided navigation[J]. IEEE/ASME transactions on mechatronics, 2018, 23(1): 233-241. DOI: 10.1109/TMECH.2017.2774296
    [101] 张静远, 徐振烊, 王新鹏. 基于TERCOM算法的水下地形辅助导航误差研究[J]. 海军工程大学学报, 2020, 32(5): 44-49.
    [102] ZHAO L, GAO N, HUANG B Q, et al. A novel terrain-aided navigation algorithm combined with the TERCOM algorithm and particle filter[J]. IEEE sensors journal, 2014, 15(2): 1124-1131. DOI: 10.1109/JSEN.2014.2360916
    [103] HAN Y, WANG B, DENG Z H, et al. An improved TERCOM-based algorithm for gravity-aided navigation[J]. IEEE sensors journal, 2016, 16(8): 2537-2544. DOI: 10.1109/JSEN.2016.2518686
    [104] LIU M Q, WANG B, DENG Z H, et al. Improved ICCP algorithm and its application in gravity matching aided inertial navigation system[C]//The 33rd Chinese Control Conference, 2014. DOI: 10.1109/ChiCC.2014.6896685
    [105] DENG Z H, LI C, YIN L J, et al. An adaptive robust unscented Kalman filter based matching algorithm for underwater gravity aided navigation[C]// IEEE CSAA Guidance, Navigation and Control Conference(CGNCC), 2018. DOI: 10.1109/GNCC42960.2018.9018670
    [106] 欧阳明达, 孙艺轩, 邝英才, 等. 应用抗差估计SITAN算法的水下重力匹配导航方法[J]. 中国惯性技术学报, 2021, 29(2): 214-220. DOI: 10.13695/j.cnki.12-1222/o3.2021.02.011
    [107] WANG Z, HUANG Y L, WANG M S, et al. A computationally efficient outlier-robust cubature kalman filter for underwater gravity matching navigation[J]. IEEE transactions on instrumentation and measurement, 2022(71): 1-18. DOI: 10.1109/TIM.2022.3141153
    [108] WANG B, ZHU J W, MA Z X, et al. Improved particle filter-based matching method with gravity sample vector for underwater gravity-aided navigation[J]. IEEE transactions on industrial electronics, 2021, 68(6): 5206-5216. DOI: 10.1109/TIE.2020.2988227
    [109] 李鑫. 地磁辅助匹配定位关键技术研究[D]. 长春: 吉林大学, 2018.
    [110] 吴志添. 面向水下地磁导航的地磁测量误差补偿方法研究[D]. 长沙: 国防科学技术大学, 2013.
    [111] 杨云涛, 石志勇, 关贞珍, 等. 地磁场在导航定位系统中的应用[J]. 中国惯性技术学报, 2007, 15(6): 686-692. DOI: 10.3969/j.issn.1005-6734.2007.06.012
    [112] 周军, 葛致磊, 施桂国. 地磁导航发展与关键技术[J]. 宇航学报, 2008, 29(5): 1467-1471. DOI: 10.3873/j.issn.1000-1328.2008.05.001
    [113] GEBRE-EGZIABHER D, ELKAIM G H, POWELL J D, et al. A non-linear two-step estimation algorithm for calibrating solid-state strapdown magnetometers[C]//The 8th International St. Petersburg Conference on Navigation Systems, 2001: 290-297.
    [114] ALONSO R, SHUSTER M D. Attitude-independent magnetometer -bias determination: a survey[J]. The journal of the astronautical sciences, 2002, 50(4): 453-475. DOI: 10.1007/BF03546248
    [115] CRASSIDIS J L, LAI K-L, HARMAN R R. Real-Time attitude-independent three-axis magnetometer calibration[J]. Journal of guidance control and dynamics, 2012, 28(1): 115-120. DOI: 10.2514/1.6278
    [116] GEBRE-EGZIABHER D. Magnetometer autocalibration leveraging measurement locus constraints[J]. Journal of aircraft, 2007, 44(4): 1361-1368. DOI: 10.2514/1.27118
    [117] 李青竹, 李志宁, 张英堂, 等. 基于椭球拟合的磁梯度张量系统集成校正[J]. 中国惯性技术学报, 2018, 26(2): 187-195.
    [118] 于向前, 刘斯, 肖池阶. 基于椭球拟合的三轴磁强计两步校准法[J]. 仪表技术与传感器, 2021(4): 52-56. DOI: 10.3969/j.issn.1002-1841.2021.04.011
    [119] 迟铖, 王丹, 吕俊伟, 等. 基于粒子群遗传算法的三轴磁通门误差校正[J]. 探测与控制学报, 2021, 43(3): 98-102.
    [120] 罗建刚, 张峰, 刘静晓, 等. 基于遗传算法的矢量磁测量非对准误差校正[J]. 探测与控制学报, 2021, 43(4): 51-57.
    [121] 周贤高, 李士心, 杨建林, 等. 地磁匹配导航中的特征区域选取[J]. 中国惯性技术学报, 2008, 16(6): 694-698.
    [122] 王哲, 王仕成, 张金生, 等. 一种基于层次分析法的地磁匹配制导适配性评价方法[J]. 宇航学报, 2009, 30(5): 1871-1878. DOI: 10.3873/j.issn.1000-1328.2009.05.021
    [123] 吕云霄, 吴美平, 胡小平. 基于支持向量机的地磁辅助导航匹配区域选取准则[J]. 兵工自动化, 2011, 30(1): 49-52. DOI: 10.3969/j.issn.1006-1576.2011.01.016
    [124] 朱占龙, 李晶. WPM方法分析地磁图指标权重灵敏度[J]. 计算机工程与应用, 2017, 53(13): 60-65. DOI: 10.3778/j.issn.1002-8331.1702-0027
    [125] 王鹏, 吴美平, 阮晴, 等. 多属性决策方法在地磁图适配性分析中的应用[J]. 兵工自动化, 2011, 30(8): 65-68. DOI: 10.3969/j.issn.1006-1576.2011.08.019
    [126] 陈有荣, 袁建平. 基于分形维数的地磁图适配性研究[J]. 飞行力学, 2009, 27(6): 76-79.
    [127] 赵建虎, 王胜平, 王爱学. 基于地磁共生矩阵的水下地磁导航适配区选择[J]. 武汉大学学报(信息科学版), 2011, 36(4): 446-449.
    [128] 张凯, 赵建虎, 王锲. 基于支持向量机的水下地形匹配导航中适配区划分方法研究[J]. 大地测量与地球动学, 2013, 33(6): 72-77.
    [129] 肖晶, 齐晓慧, 段修生, 等. 基于深度卷积神经网络的地磁导航方向适配性分析[J]. 工程科学学报, 2017, 39(10): 1584-1590.
    [130] 种洋, 柴洪洲, 常宜峰, 等. 自组织优化分类的AUV地磁导航适配区选取[J]. 武汉大学学报(信息科学版), 2022, 47(5): 722-730.
    [131] 孙晓洁, 寇军, 张笑楠, 等. 地磁导航技术研究进展[J]. 导航与控制, 2016, 15(6): 1-6. DOI: 10.3969/j.issn.1674-5558.2016.06.001
    [132] 谢仕民, 李邦清, 李文耀, 等. 地磁匹配技术及其基本匹配算法仿真研究[J]. 航天控制, 2008, 26(5): 55-59.
    [133] GUO C F, CAI H, HEIJDEN G H M. Feature extraction and geomagnetic matching[J]. Journal of navigation, 2013, 66(6): 799-811. DOI: 10.1017/S0373463313000490
    [134] LIN Y, YAN L, TONG Q X. Underwater geomagnetic navigation based on ICP algorithm[C]//IEEE International Conference on Robotics and Biomimetics, 2007. DOI: 10.1109/ROBIO.2007.4522496
    [135] LI M, LIU Y, XIAO L P. Performance of the ICCP algorithm for underwater navigation[C]//International Conference on Mechatronics and Control, 2014. DOI: 10.1109/ICMC.2014.7231579
    [136] SONG Z G, ZHANG J S, ZHU W Q, et al. The vector matching method in geomagnetic aiding navigation[J]. Sensors, 2016, 16(7): 1120-1132. DOI: 10.3390/s16071120
    [137] WANG H B, XU X S, ZHANG T. Multipath parallel ICCP underwater terrain matching algorithm based on multibeam bathymetric data[J]. IEEE access, 2018(6): 48708-48715. DOI: 10.1109/ACCESS.2018.2866687
    [138] HAGEN O K, ÅNONSEN K B. Using terrain navigation to improve marine vessel navigation systems[J]. Marine technology society journal, 2014, 48(2): 45-58. DOI: 10.4031/MTSJ.48.2.6
    [139] CARLSTROM J, NYGREN I. Terrain navigation of the swedish AUV62F vehicle[C]//International Symposium Unmanned Untethered Submersible Technol, 2005: 1-10. DOI: ConferenceArticle/5aeqa3f8c095d712542967b5
    [140] NYGREN I. Robust and efficient terrain navigation of underwater vehicles[C]//Position, Location and Navigation Symposium, 2008. DOI: 10.1109/PLANS.2008.4570034
    [141] CARRENO S, WILSON P, RIDAO P, et al. A survey on terrain based navigation for AUVs[C]. Oceans 2010 MTS/IEEE Seattle, 2010. DOI: 10.1109/OCEANS.2010.5664372
    [142] NAKATANI T, URA T, ITO Y, et al. AUV “TUNA-SAND” and its exploration of hydrothermal vents at Kagoshima Bay[C]//Oceans 2008 MTS/IEEE Kobe Techno-Ocean, 2008. DOI: 10.1109/OCEANSKOBE.2008.4531099
    [143] MEDUNA D K, ROCK S M, MCEWEN R S. Closed-loop terrain relative navigation for AUVs with non-inertial grade navigation sensors[C]//Autonomous Underwater Vehicles, 2011. DOI: 10.1109/AUV.2010.5779659
    [144] 张静远, 谌剑, 李恒, 等. 水下地形辅助导航技术的研究与应用进展[J]. 国防科技大学学报, 2015, 37(3): 128-135. DOI: 10.11887/j.cn.201503021
    [145] 宋帅, 周勇, 张坤鹏, 等. 高精度和高分辨率水下地形地貌探测技术综述[J]. 海洋开发与管理, 2019, 36(6): 74-79. DOI: 10.3969/j.issn.1005-9857.2019.06.017
    [146] 李海森, 魏波, 杜伟东. 多波束合成孔径声呐技术研究进展[J]. 测绘学报, 2017, 46(10): 1760-1769. DOI: 10.11947/j.AGCS.2017.20170410
    [147] 李海森, 周天, 徐超. 多波束测深声纳技术研究新进展[J]. 声学技术, 2013, 32(2): 73-80.
    [148] 冯晓晨, 葛彤, 王小丹. 基于神经网络的水下对接引导算法[J]. 舰船科学技术, 2021, 43(17): 102-107.
    [149] DUNÍK J, SOTÁK M, VESELÝ M, et al. Design of RAO-blackwellized point-mass filter with application in terrain aided navigation[J]. IEEE transactions on aerospace and electronic systems, 2019, 55(1): 251-272. DOI: 10.1109/TAES.2018.2850210
    [150] SALAVASIDIS G, MUNAFÒ A, HARRIS C, et al. Terrain-aided navigation for long-endurance and deep-rated autonomous underwater vehicles[J]. Journal of field robotics, 2018, 36(2): 447-474. DOI: 10.1002/rob.21832
    [151] ZHOU T, PENG D D, XU C, et al. Adaptive particle filter based on kullback-leibler distance for underwater terrain aided navigation with multi-beam sonar[J]. IET radar, sonar & navigation, 2018, 12(4): 433-441. DOI: 10.1049/iet-rsn.2017.0239
    [152] 马腾, 丁硕硕, 范佳佳, 等. 海底地形匹配高效质点滤波导航方法[J]. 数字海洋与水下攻防, 2021, 4(6): 439-445.
    [153] PENG D D, ZHOU T, FOLKESSON J, et al. Robust particle filter based on Huber function for underwater terrain-aided navigation[J]. IET radar, sonar & navigation, 2019, 13(1): 1867-1875. DOI: 10.1049/iet-rsn.2019.0123
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  2952
  • HTML全文浏览量:  489
  • PDF下载量:  418
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-25
  • 录用日期:  2022-07-13
  • 网络出版日期:  2022-08-08

目录

    /

    返回文章
    返回