Direction finding method based on spatial spectrum estimation with less channel quasi calibration
-
摘要: 针对导航干扰信号测向初始相位估计难度大导致空间谱测向精度低、误差大的问题,提出了一种以经典多重信号分类(MUSIC)算法为基础的“少通道准校正空间谱测向方案”. 该方案是在每个通道内加入校准源,从而获得任意两个通道的初始相位差,减小了通道间的初始相位差对协方差矩阵计算的影响,实现空间谱测向的目的. 将所提的方案应用于五阵元三通道测向天线并在试验场地进行测试,实验结果表明:该方法能够解决复杂场景下单信号、双信号的测向,在低信噪比(SNR)的情况下,测向误差仍能保持在3.5°左右,测向精度较高,测向结果与全通道的测向结果基本一致.
-
关键词:
- 空间谱测向 /
- 多重信号分类(MUSIC)算法 /
- 准校正 /
- 少通道 /
- 导航干扰信号
Abstract: Considering the problem that the initial phase value is difficult to estimate which may consequently cause the low precision of direction-finding result with spatial spectrum estimation, in this paper a direction-finding method with spatial spectrum estimation using less channel quasi calibration is studied based on classic multiple signal classification (MUSIC) algorithm. In this method a calibration source is added in each channel, so that initial phase difference of each two channel can be achieved, and its effects to the calculation of covariance matrix be decreased. This method is applied in the direction-finding antenna with five elements and three channels. Test results show that with this method can realize the direction finding of single signal and double signals in complex scenes. Under the condition of low signal to noise ratio (SNR), the direction finding error can still be kept at about 3.5°, and the direction finding accuracy is high. The direction finding results are basically consistent with the direction finding results of the whole channel. -
表 1 五阵元三通道仿真轮换方案
轮换序号
(共4次)通道1连接
的天线通道2连接
的天线通道3连接
的天线计算出的协方差 1 1 4 5 $ {R_{14}} $$ {R_{15}} $$ {R_{45}} $$ {R_{11}} $$ {R_{44}} $$ {R_{55}} $ 2 1 2 3 $ {R_{12}} $$ {R_{13}} $$ {R_{23}} $$ {R_{11}} $$ {R_{22}} $$ {R_{33}} $ 3 3 4 5 $ {R_{34}} $$ {R_{35}} $$ {R_{45}} $$ {R_{33}} $$ {R_{44}} $$ {R_{55}} $ 4 2 4 5 $ {R_{25}} $$ {R_{24}} $$ {R_{45}} $$ {R_{22}} $$ {R_{44}} $$ {R_{55}} $ -
[1] ALSALTI H A, ABUALNADI D I, ABDALAZEEZ M K, Direction of arrival for uniform circular array using directional antenna elements[C]//IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), 2021: 83-88. DOI: 10.1109/JEEIT53412.2021.9634136 [2] ZHANG Q T, LIU Y, LONG X D. A cyclostationarity based esprit algorithm for DOA estimation of uniform circular array[C]//IEEE Statistical Signal Processing Workshop (SSP), 2021. DOI: 10.1109/SSP49050.2021.9513864 [3] SELVA J. Efficient wideband DOA estimation through function evaluation techniques[J]. IEEE transactions on signal processing, 2018, 66(12): 3112-3123. DOI: 10.1109/TSP.2018.2824256 [4] SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE transactions on antennas and propagation, 1986, 34(3): 276-280. DOI: 10.1109/TAP.1986.1143830 [5] 张洪铭. 改进MUSIC算法的相干信号DOA估计研究[D]. 舟山: 浙江海洋大学, 2019. [6] 谢诺. 宽带相干信源测向算法研究及实现[D]. 西安: 西安电子科技大学, 2010. [7] 王永德, 陈旗, 黎铁冰. 基于最大似然估计的空间谱测向技术[J]. 计算机数字工程, 2010, 38(9): 123-126,178. [8] 唐柯, 张笑语, 邓又川, 等. 少通道空间谱测向方案研究[J]. 中国无线电, 2020(3): 69-72. DOI: 10.3969/j.issn.1672-7797.2020.03.039 [9] 姚昕彤, 王玉文, 刘奇. 基于MUSIC及其改进算法的DOA估计研究[J]. 通信技术, 2021, 54(6): 1363-1369. DOI: 10.3969/j.issn.1002-0802.2021.06.012