Single-frequency single-point positioning performance analysis of combined BDS-3/GNSS systems in Asia-Pacific
-
摘要: 针对北斗三号卫星导航系统(BDS-3)向全球提供定位、导航和授时(PNT)服务后的定位性能评估问题,基于MGEX (Multi-GNSS Experiment) WHU2站7天实测数据,从可视卫星数、几何精度衰减因子(GDOP)、定位精度、定位成功率和伪距残差方面分析了BDS-3及BDS/GNSS组合伪距单点定位(SPP)性能. 结果表明:在亚太地区,BDS-3具有比美国的GPS、俄罗斯的GLONASS、欧洲的Galileo更优的SPP性能,其水平、垂直和三维精度分别为1.19 m、2.34 m、2.38 m,三维精度比北斗二号卫星导航系统(BDS-2)、GPS、GLONASS和Galileo 的SPP精度分别提升了54.8%、27.2%、86.4%和1.2%. 此外,BDS/GPS/Galileo组合能获得最优的SPP精度,其水平、垂直和三维精度分别为0.96 m、1.66 m、1.77 m,相较于BDS-2/BDS-3 SPP分别提升了18.6%、19.4%和17.3%.Abstract: BeiDou-3 Navigation Satellite System (BDS-3) has provided positioning navigation and timing (PNT) services for users worldwide. This paper analyzed the single-frequency single-point positioning (SPP) performance of BDS-3 and its combination with other Global Navigation Satellite System (GNSS) in terms of the mean number of visible satellites, geomettic dilution of precision (GDOP), positioning accuracy, positioning success ratio and pseudo-range residuals using 7 day observations collected at MGEX WHU2 station. The results show that, in the Asia-Pacific region, the RMS of BDS-3 SPP results is 1.19 m, 2.34 m, and 2.38 m in horizontal, vertical and three-dimensional (3D), respectively, the performance of BDS-3 SPP is better that the GPS, GLONASS and Galileo. The 3D accuracy of BDS-3 SPP is improved by 54.8%, 27.2%, 86.4% and 1.2%, respectively, compared with the BDS-2, GPS, GLONASS and Galileo SPP. The accuracy of the combined BDS/GPS/Galileo SPP is 0.96 m, 1.66 m and 1.77 m in horizontal, vertical and 3D, respectively, which is the best among the multi-GNSS SPP. Compared with the BDS SPP results, the accuracy of the combined BDS/GPS/Galileo SPP is improved by 18.6%, 19.4%, and 17.3% in horizontal, vertical and 3D, respectively.
-
表 1 单频SPP数据处理策略
表 2 WHU2站2021年5月2日至8日各卫星系统平均可视卫星数和平均GDOP
卫星系统 PRN 平均可视
卫星颗数平均
GDOPGPS (31颗)G01~G10,G12~G32 7.0 3.1 GLONASS (24颗)R01~R24 5.1 5.3 Galileo (24颗)E01~E05,E07~E09,E11~E15,E18,E19,E21,E24~E27,E30,E31,E33,E36 6.0 3.9 BDS-3 (27颗)C19~C30,C32~C46 8.5 2.4 BDS-2 (14颗)C01~C04,C06~C14,C16 10.0 3.7 表 3 2021年5月2日至8日WHU2站单系统单频SPP结果统计
卫星系统 定位精度RMS/m (1σ) 定位成功率/% 伪距残差RMS/m BDS-3改善率/% 水平 垂直 三维 BDS-3 1.19 2.34 2.38 100.0 0.36 - GPS 1.60 3.23 3.27 96.1 0.49 27.2 GLONASS 8.93 15.56 17.56 67.1 8.14 86.4 Galileo 1.40 2.31 2.41 91.7 0.67 1.2 BDS-2 1.92 5.26 5.27 78.4 0.44 54.8 表 4 2021年5月2日至8日WHU2站BDS/GNSS组合单频SPP结果统计
卫星系统 定位精度RMS/m 定位成功率/% 伪距残差/m 比BDS-3改善率/% 比BDS改善率/% 水平 垂直 三维 BDS-2/BDS-3 1.18 2.06 2.14 100 0.49 10.1 - BDS/GPS 1.00 1.91 2.01 100 0.62 15.5 6.1 BDS/GLONASS 1.28 2.49 2.79 100 1.26 −17.2 −30.4 BDS/Galileo 1.07 1.70 1.79 100 0.57 24.8 16.4 BDS/GPS/GLONASS 1.02 2.04 2.35 100 1.17 1.3 −9.8 BDS/GPS/Galileo 0.96 1.66 1.77 100 0.60 25.6 17.3 BDS/GLONASS/Galileo 1.13 1.87 2.19 100 1.14 8.0 −2.3 BDS/GPS/GLONASS/Galileo 0.99 1.78 2.09 100 1.09 12.2 2.3 -
[1] 张小红, 马福建. 低轨导航增强GNSS发展综述[J]. 测绘学报, 2019, 48(9): 1073-1087. DOI: 10.11947/j.AGCS.2019.20190176 [2] 姜卫平, 郭迟, 左文炜. 我国导航与位置服务的进展及思考[J]. 测绘通报, 2020(1): 1-4,25. [3] 李德仁. 展望5G/6G时代的地球空间信息技术[J]. 测绘学报, 2019, 48(12): 1475-1481. [4] 刘经南, 郭文飞, 郭迟, 等. 智能时代泛在测绘的再思考[J]. 测绘学报, 2020, 49(4): 403-414. DOI: 10.11947/j.AGCS.2020.20190539 [5] NIE Z X, LIU F, GAO Y. Real-time precise point positioning with a low-cost dual-frequency GNSS device[J]. GPS solutions, 2020, 24(1): 9. DOI: 10.1007/s10291-019-0922-3 [6] HAMZA V, STOPAR B, AMBROI T, et al. Testing multi-frequency low-cost GNSS receivers for geodetic monitoring purposes[J]. Sensors, 2020, 20(16): 4375. DOI: 10.3390/s20164375 [7] NING F S, MENG X L, WANFG Y T. Low-cost receiver and network real-time kinematic positioning for use in connected and autonomous vehicles[J]. Journal of navigation, 2019, 72(4): 1-14. DOI: 10.1017/S037346331800111X [8] FAMIGLIETTI N A, CECERE G, GRASSO C, et al. A test on the potential of a low cost unmanned aerial vehicle RTK/PPK solution for precision positioning[J]. Sensors, 2021, 21(11): 3882. DOI: 10.3390/s21113882 [9] 陈永贵, 朱玉香. 北极地区BDS-3伪距单点定位精度分析[J]. 全球定位系统, 2020, 45(4): 114-118. [10] 彭劲松. GEO卫星对BDS-3伪距单点定位性能定量提升分析[J]. 全球定位系统, 2020, 45(5): 62-66. [11] 谭理庆, 曹阳, 彭琦, 等. BDS-3数据质量及SPP定位性能分析[J]. 全球定位系统, 2021, 46(1): 68-76. DOI: 10.12265/j.gnss.2020102802 [12] 杨毅, 胡洪, 解雪峰, 等. BDS-3/GPS在遮挡环境下定位性能分析[J]. 全球定位系统, 2021, 46(3): 104-110. DOI: 10.12265/j.gnss.2020120301 [13] 王汉民. 北斗二号对北斗三号伪距单点定位精度影响分析[J]. 全球定位系统, 2021, 46(2): 44-48. DOI: 10.12265/j.gnss.2020082504 [14] 孔豫龙, 柴洪洲, 潘宗鹏, 等. BDS-3新卫星的标准单点定位结果分析[J]. 测绘科学, 2019, 44(4): 152-157,195. [15] 慕仁海, 党亚民, 许长辉. BDS-3新频点单点定位研究[J]. 测绘通报, 2021(3): 12-17. [16] 彭劲松. BDS-3新频率与Galileo单频组合伪距单点定位精度分析[J]. 全球定位系统, 2021, 46(1): 57-61. DOI: 10.12265/j.gnss.2020102001 [17] GUAN Q L, FAN C M, ZHENG J S, et al. Multistep weighted least squares estimation method for improving single-point positioning accuracy[J]. Journal of applied remote sensing, 2019, 13(3): 038503. DOI: 10.1117/1.JRS.13.038503 [18] SAASTAMOINEN J. Contributions to the theory of atmospheric refraction[J]. Bulletin géodésique (1946-1975), 1972, 46(3): 279-298. DOI: 10.1007/BF02521844 [19] KLOBUCHAR J A. Ionospheric time-delay algorithm for single-frequency GPS users[J]. IEEE transactions aerospace and electronic systems, 1987, AES-23(3), 325-331. DOI:10.1109/TAES.1987.310829