The digital twin earth fusioning BDS and GF
-
摘要: 本文阐述了数字孪生地球的起源、概念、构建和发展,重点探讨了北斗、高分、数字孪生与数字地球的融合. 基于通信和计算机等共性信息基础设施,将数字孪生地球的构建分为6个步骤:全链可信时空、全息精准映射、实时泛在感知、多模数据融合、单体时空智慧和全域共智共治. 针对时空大数据从采集到应用都具有分布式特点,提出了利用“北斗+区块链”技术解决业务协作中的信任问题. 指出了高分实现虚实地球间的全息镜像,北斗作为高分产品传递时空基准,实现了虚实地球间的精准映射;另外,北斗和高分也是实现时空态势感知的主要技术. 针对海量时空大数据对数据操作和融合带来的挑战,指出了北斗网格位置码是更有效的数据组织模式. 介绍了利用时空大数据驱动人工智能(AI)和模拟仿真,可为规划、设计和决策提供最优方案. 分析了单体智慧的存在重复建设和资源浪费等问题,指出了数字孪生地球是跨界融合各种异构单体智慧,实现全域共智共治的时空底座.
-
关键词:
- 北斗卫星导航系统(BDS) /
- 高分辨率对地观测卫星 /
- 区块链 /
- 数字地球 /
- 数字孪生
Abstract: This paper expounds the origin, concept, construction and development of digital twin earth, especially the integration of BeiDou Satellite Naviation System (BDS) and GF, digital twin and digital earth. Based on common information infrastructure such as communication and computer, the construction of digital twin earth is divided into six steps: full-chain credible space-time, holographic precision mapping, real-time ubiquitous perception, multi-module data fusion, single spatio-temporal intelligence, and all-domain shared intelligence and governance. In view of the distributed characteristics of spatio-temporal big data from collection to application, the “BDS + block chain” technology is proposed to solve the trust problem in business collaboration. It is pointed out that GF realizes the holographic image between the virtual and real earth, and BDS delivers the space-time datum for products of GF, realizing the accurate mapping between the virtual and real earth. In addition, BDS and GF are also the main technologies to realize space-time situation awareness. In view of the challenges brought by massive spatio-temporal big data to data operation and fusion, it is pointed out that grid location code of BDS is a more effective data organization mode. This paper introduces artificial intelligence and simulation driven by spatio-temporal big data, which can provide optimal scheme for planning, design and decision making. This paper analyzes the problems of duplication construction and resource waste of single intelligence, and points out that digital twin earth is the temporal and spatial base for the cross-border integration of various heterogeneous single intelligence and the realization of all-domain shared intelligence and governance. -
[1] 陈述彭. “数字地球”战略及其制高点[J]. 遥感学报, 1999, 3(4): 247-253. DOI: 10.11834/jrs.19990401 [2] 陈述彭. “数字鸿沟”与地球信息科学的应对[J]. 地球信息科学, 2003, 5(2): 1-2. [3] 陈述彭. 从专题地图到数字地球——20世纪我国地图科技复兴的一角[J]. 测绘科学, 2008, 33(1): 5-6. DOI: 10.3771/j.issn.1009-2307.2008.01.001 [4] 承继成. 国家空间信息基础设施与数字地球[M]. 北京: 清华大学出版社, 1999. [5] 承继成. 数字地球导论[M]. 北京: 科学出版社, 2000. [6] 李德仁, 龚健雅, 邵振峰. 从数字地球到智慧地球[J]. 武汉大学学报(信息科学版), 2010, 35(2): 127-132. [7] 龚健雅. 三维虚拟地球发展及应用[J]. 地理信息世界, 2011, 9(2): 15-17. [8] 邵宗有. 构建北斗为体高分为象的数字孪生地球[R]. 第十一届中国卫星导航年会, 成都, 2020. [9] 安世亚太科技股份有限公司. 数字孪生体技术白皮书[R]. 北京, 2019. [10] 中国信息通信研究院. 数字孪生城市研究报告[R]. 北京, 2018. [11] 中国信息通信研究院. 数字孪生城市白皮书[R]. 北京, 2021. [12] 中国信息通信研究院. 数字孪生城市典型场景与应用案例[R]. 北京, 2021. [13] 中国电子技术标准化研究院. 数字孪生应用白皮书[R]. 北京, 2020. [14] 中国卫星导航定位协会. 中国卫星导航与位置服务产业发展白皮书[R]. 北京, 2021. [15] 自然资源部科技发展司. 自然资源部卫星遥感应用报告(2019年) [R]. 北京, 2020. [16] 陈锐志, 王磊, 李德仁, 等. 导航与遥感技术融合综述[J]. 测绘学报, 2019, 48(12): 1507-1522. [17] 李文. 卫星通信、导航和遥感融合系统的关键技术研究[D]. 成都: 电子科技大学, 2016. [18] 中国信息通信研究院. 区块链白皮书(2020年)[R]. 北京, 2020. [19] 孙传恒, 于华竟, 徐大明, 等. 农产品供应链区块链追溯技术研究进展与展望[J]. 农业机械学报, 2021, 52(1): 1-13. DOI: 10.6041/j.issn.1000-1298.2021.01.001 [20] 周玉科. 利用区块链技术促进地球科学数据共享的思考: 概念与方案[J]. 测绘与空间地理信息, 2020, 43(9): 13-16. [21] 傅易文晋, 陈华辉, 钱江波, 等. 面向时空数据的区块链研究综述[J]. 计算机工程, 2020, 46(3): 1-10. [22] 王正涛, 姜卫平, 晁定波. 卫星跟踪卫星测量确定地球重力场的理论和方法[M]. 武汉: 武汉大学出版社, 2011. [23] 国家测绘地理信息局. 大地测量控制点坐标转换技术规范. 测绘行业标准: CH/T 2014—2016[S]. 2016. [24] 葛小三. 基于网格技术的空间知识发现与数据挖掘研究[J]. 武汉大学学报(信息科学版), 2006, 31(12): 1105-1107. [25] 张静. 3D地球数据组织与网络传输优化方法[D]. 合肥: 合肥工业大学, 2014. [26] 刘春雨. 基于数字地球的动态天空仿真与虚拟空战关键技术研究[D]. 成都: 电子科技大学, 2014. [27] 董来稳. 基于数字地球的海量场景数据实时调度与绘制技术[D]. 成都: 电子科技大学, 2015.