The multifunctional BeiDou emergency position indicating radio beacon for smart fishing boat
-
摘要: 为克服传统卫星紧急无线电示位标(EPIRB)定位精度差、功能单一的不足,满足渔船信息化、智能化的需求,设计了一种基于北斗定位和短报文通信技术的新型多功能示位标. 首先,进行了示位标的硬件设计;其次,进行了示位标在极端恶劣海况下的偏转角仿真实验和不同姿态下的短报文收发测试,提出了基于示位标姿态的短报文发送机制;最后,进行了实验验证. 结果表明:基于示位标姿态的短报文发送机制能够有效提高短报文投递率,设计的多功能北斗示位标在智慧渔船应用中具有良好的推广前景.
-
关键词:
- 卫星紧急无线电示位标(EPIRB) /
- 短报文 /
- 偏转角 /
- 姿态 /
- 投递率 /
- 北斗卫星导航系统(BDS)
Abstract: A new type of multifunctional Emergency position indicating radio beacon (EPIRB) based on BeiDou positioning and short message communication technology was designed to overcome the shortcomings of poor positioning accuracy and single function of traditional EPIRB and meet the needs of informatization and intelligence of fishing boats. Firstly, the hardware of EPIRB were carried out. Secondly, the yaw angle simulation experiment of EPIRB in the extreme sea conditions and the message transmission and reception test were performed, and a short message sending mechanism based on the EPIRB attitude under different attitudes are proposed. Finally, experiments are conducted to verify the mechanism, and the experimental results show that the short message sending mechanism based on the EPIRB attitude can improve effectively the short message delivery rate, and the multifunctional BeiDou EPIRB designed in this paper has a good promotion prospect in the application of smart fishing boats. -
表 1 示位标主要参数
要素 参数 要素 参数 质量/kg 4.828 吃水高度/mm 149.020 直径/mm 200 X轴转动惯量/(kg·mm²) 77.461 总高/mm 350 Y轴转动惯量/(kg·mm²) 77.461 重心高度/mm 38.392 Z轴转动惯量/(kg·mm²) 59.141 浮心高度/mm 75.001 表 2 示位标模拟海况数据实验参数
环境条件 参数 环境条件 参数 有效波高/m 10 波长/m 224 最大波高/m 20 环境温度/℃ 20~50 波浪周期/s 12 相对湿度/% 0~100 -
[1] 王茂祥, 应志芳. 我国现代渔业实现高质量发展的若干问题探讨[J]. 河北渔业, 2020(1): 51-53. DOI: 10.3969/j.issn.1004-6755.2020.01.012 [2] 许志强. 海洋应急指挥机动通信组网系统中多模融合无线通信技术研究[J]. 全球定位系统, 2020, 45(4): 76-82. DOI: 10.13442/j.gnss.1008-9268.2020.04.000 [3] 陈倩. 北斗卫星导航系统船舶应急搜救应用及标准化[J]. 信息技术与标准化, 2020(6): 18-22. DOI: 10.3969/j.issn.1671-539X.2020.06.006 [4] 黄伦文, 陈永方. 一种基于北斗应急无线电示位标的设计[J]. 电子世界, 2020, 592(10): 116-1118. DOI: 10.19353/j.cnki.dzsj.2020.10.061 [5] STM32L151x6/8/B-ASTM32L152x6/8/B-A[Z/OL]. [2022-01-10]. https://www.st.com/resource/en/datasheet/stm32l151rb-a.pdf [6] 吴思莹, 伍丹, 丁惊雷. 基于势流理论的大型船舶最小装机功率波浪增阻预报[J]. 舰船科学技术, 2020, 42(8): 88-92. DOI: 10.3404/j.issn.16727649.2020.08.016 [7] LI H J, XU C G, TIAN Y Q, et al. The design of a novel small waterplane area pillar buoy based on rolling analysis[J]. Ocean engineering, 2019, 184(7): 289-298. DOI: 10.1016/J.OCEANENG.2019.05.040 [8] HU J P, ZHU L, LIU S H. Analysis and optimization on the flow ability of wave buoy based on AQWA[J]. IOP conference series earth and environmental science, 2018, 171(1): 012004. DOI: 10.1088/1755-1315/171/1/012004 [9] 吕鸿冠, 黄技, 王天霖, 等. 基于AQWA的滑翔圆碟的水面漂移特性研究[J]. 舰船科学技术, 2016, 38(12): 121-126. [10] 梁冠辉, 孙宝楠, 薛宇欢, 等. 应用于海洋物性监测仪的小型浮标水动力分析[J]. 海洋科学进展, 2021, 39(1): 136-138. DOI: 10.3969/j.issn.1671-6647.2021.01.014 [11] 郑强, 杨日杰. 电磁波在海水中的传播特性研究[J]. 电声技术, 2013, 37(2): 33-35. DOI: 10.3969/j.issn.1002-8684.2013.02.009 [12] 闫西荡, 杨坤德. 蒸发波导环境下风浪对电磁波传播影响的数值模拟研究[J]. 海洋与湖沼, 2020, 51(1): 13-19. DOI: 10.11693/hyhz20190700129