Performance analysis of BDS-2/BDS-3 carrier phase time transfer
-
摘要: 本文给出了载波相位时间传递数学模型,并基于多模全球卫星导航系统(GNSS)试验跟踪网MGEX (Multi-GNSS Experiment)的实测数据,对北斗二号/北斗三号卫星导航系统(BDS-2/BDS-3)融合载波相位时间传递性能进行分析. 结果表明:BDS-3的加入能够增加测站的可视卫星数量,改善卫星分布空间构型. 相比仅使用BDS-2,BDS-2/BDS-3融合解算可将MRO1-CUSV和NNOR-CUSV的时间传递精度分别从0.11 ns、0.10 ns提高到0.07 ns、0.08 ns,A类不确定度分别从0.007 ns、0.006 ns提高到0.004 ns、0.005 ns.
-
关键词:
- 北斗卫星导航系统(BDS) /
- 全球卫星导航系统(GNSS) /
- 载波相位 /
- 时间传递 /
- 精度
Abstract: The mathematical model of carrier phase time transfer is given, and the performance of BeiDou-2/BeiDou-3 Navigation Satellite System (BDS-2/BDS-3) combined carrier phase time transfer is analyzed based on the measured data of the multi-GNSS experiment (MGEX). The results show that the addition of BDS-3 can increase the number of visible satellites and improve the spatial configuration of satellite distribution. Compared with only using the BDS-2 system, the time transfer accuracy of MRO1-CUSV and NNOR-CUSV can be improved from 0.11 ns and 0.10 ns to 0.07 ns and 0.08 ns, and the A-class uncertainty can be improved from 0.007 ns and 0.006 ns to 0.004 ns and 0.005 ns, respectively, in the BDS-2/BDS-3 combination scenario. -
表 1 两种方案结果的标准差
ns 方案 MRO1-CUSV NNOR-CUSV 方案1 0.11 0.10 方案2 0.07 0.08 表 2 两种方案结果的A类不确定度
ns 方案 MRO1-CUSV NNOR-CUSV 方案1 0.007 0.006 方案2 0.004 0.005 -
[1] 王义遒. 原子钟与时间频率系统[M]. 北京: 国防工业出版社, 2012. [2] 吴海涛, 李变, 武建锋. 北斗授时技术及其应用[M]. 北京: 电子工业出版社, 2016. [3] 于合理, 郝金明, 郭福生, 等. 遮挡环境下BDS/GPS等权组合载波相位时间传递方法[J]. 测绘学报, 2018, 47(S0): 109-116. DOI: 10.11947/j.AGCS.2018.20180291 [4] GE Y L, QIN W J, SU K, et al. A new approach to real-time precise point-positioning timing with international GNSS service real-time service products[J]. Measurement science and technology, 2019, 30(12): 125104. DOI: 10.1088/1361-6501/ab2fa5 [5] PETIT G, KANJ A, LOYER S, et al. 1×10−16 Frequency transfer by GPS PPP with integer ambiguity resolution[J]. Metrologia, 2015, 52(2): 301-309. DOI: 10.1088/0026-1394/52/2/301 [6] LAHAYE F, COLLINS P, CERRETTO G, et al. Advances in time and frequency transfer from dual-frequency GPS pseudorange and carrier-phase observations[C]//The 40th Annual Precise Time and Time Interval (PTTI) Meeting, 2008: 415-432. [7] JIANG Z, LEWANDOWSKI W. Accurate GLONASS time transfer for the generation of the coordinated universal time[J]. International journal of navigation and observation, 2012: 1687-5990. DOI: 10.1155/2012/353961 [8] 陈俊平, 于超, 周建华, 等. 北斗二号/三号融合的分米级星基增强算法与性能分析[J]. 中国科学:物理学 力学 天文学, 2021, 51(1): 59-67. [9] 蔡洪亮, 孟轶男, 耿长江, 等. 北斗三号全球导航卫星系统服务性能评估: 定位导航授时、星基增强、精密单点定位、短报文通信与国际搜救[J]. 测绘学报, 2021, 50(4): 427-435. [10] 杨帆. 基于GEO和IGSO卫星的高精度共视时间传递[D]. 北京: 中国科学院大学, 2013. [11] 王天. 北斗卫星导航系统授时性能评估研究[D]. 西安: 长安大学, 2014. [12] WANG L, LI Z S, GE M R, et al. Investigation of the performance of real-time BDS-only precise point positioning using the IGS real-time service[J]. GPS solutions, 2019, 23(3): 66. DOI: 10.1007/s10291-019-0856-9 [13] 吕大千. 基于精密单点定位的 GNSS 时间同步方法研究[D]. 长沙: 国防科技大学, 2020. [14] 葛玉龙. 多频多系统精密单点定位时间传递方法研究[D]. 北京: 中国科学院大学, 2020.