Cycle-slip detection and reparation algorithm for satellite-ground two-way time difference measurements
-
摘要: 随着空间时间频率基准的精度越来越高,需要与之匹配的空间时频传递技术. 基于载波相位的星地双向时差测量方法可以实现更高的时间频率传递精度,但对于复杂的星地环境,由于航天器飞行动态高,时频传递链路的传输频率高,载波多普勒效应大,更容易出现粗差和周跳. 基于此,研究一种适合高动态环境下的星地双向时差测量系统载波相位周跳探测与修复方法,提出一种适用于三频组合模式的双向周跳探测与修复方法. 该方法联合双频码相 (MW)组合法可以实现不同类型周跳的探测与修复,对于上下行三条微波链路均可探测出周跳的存在并实现毫米级周跳修复精度. 进一步对基于载波相位测量的星地双向时差测量系统的星地时间同步性能进行分析,在经过周跳探测与修复,以及链路时延数据处理,其星地时间同步精度优于0.3×10–12 s.Abstract: High precision time-frequency reference requires high precision time-frequency transfer technology. The satellite-ground two-way time difference of carrier phase measurement can achieve higher time-frequency transfer accuracy. However, in the complex satellite-ground environments, due to the high flight dynamics of the spacecraft and the high transmission frequency of the time-frequency link, and the carrier doppler effect is large, gross errors and cycle slips are more likely to occur. This paper focuses on a carrier phase cycle slip detection and reparation algorithm for satellite-ground two-way time difference measurement system in high dynamic environment, and proposes a two-way cycle slip detection and reparation method for three-frequency mode. This method combined with Melbaurne wubbena (MW) combination method can realize the detection and repair of different types of cycle slips. For the three links, the existence of cycle slips can be detected and the mm-level cycle slip repair accuracy can be realized. The satellite-ground time synchronization performance of the satellite-ground two-way time difference measurement system based on carrier phase measurement is further analyzed. After cycle slip detection and repair, and link delay data processing, the time synchronization accuracy is better than 0.3×10–12 s.
-
表 1 不同类型周跳
周跳类型 历元 周跳 上行$ {f_{{\text{GS}}}} $ 下行$ {f_{{\text{SG1}}}} $ 下行$ {f_{{\text{SG2}}}} $ 小周跳 30 1 1 –1 60 2 2 0 90 –1 0 1 连续周跳 150 2 –3 2 151 4 5 –5 152 –7 2 7 200 3 –4 3 201 –6 6 9 202 4 9 –4 不敏感周跳 250 10 10 10 表 2 周跳探测与修复结果
周跳类型 历元 周跳组合 探测结果 周跳浮点解 小周跳 30 (1,1,−1) 成功 (0.990,0.999,−1.015) 60 (2,2,0) 成功 (2.155,2.132,0.137) 90 (−1,0,1) 成功 (−0.957,0.050,1.025) 连续周跳 150 (2,−3,2) 成功 (2.095,−2.931,2.071) 151 (4,5,−5) 成功 (3.762,4.801,−5.215) 152 (−7,2,7) 成功 (−6.918,2.073,7.068) 200 (3,−4,3) 成功 (3.030,−4.003,3.020) 201 (−6,6,9) 成功 (−6.227,5.794,8.801) 202 (4,9,−4) 成功 (4.031,9.029,−3.977) 不敏感周跳 250 (10,10,10) 成功 (9.924,9.892,9.914) -
[1] 吕宏春, 卢晓春, 武建锋. 星间链路体制下的星地双向时间同步方法[J]. 宇航学报, 2017, 38(7): 728-734. DOI: 10.3873/j.issn.1000-1328.2017.07.008 [2] 张鹏飞, 涂锐, 广伟, 等. BDS-3时间频率传递方法及其性能分析[J]. 导航定位与授时, 2020, 7(5): 58-64. [3] FONVILLE B, MATSAKIS D, PAWLITZKI A, et al. Development of carrier-phase-based two-way satellite time and frequency transfer (TWSTFT)[C]//The 36th Annual Precise Time and Time Interval (PTTI) Meeting, 2005. [4] 沈朋礼, 成芳, 肖厦, 等. 北斗三号卫星的周跳探测与修复算法[J]. 测绘科学, 2019, 44(11): 9-14,21. [5] 张成军, 许其凤, 李作虎. 对伪距/相位组合量探测与修复周跳算法的改进[J]. 测绘学报, 2009, 38(5): 402-407. DOI: 10.3321/j.issn:1001-1595.2009.05.005 [6] 王仁谦, 朱建军. 利用双频载波相位观测值求差的方法探测与修复周跳[J]. 测绘通报, 2004(6): 9-11. DOI: 10.3969/j.issn.0494-0911.2004.06.003 [7] GEOFFREY B. An automatic editing algorithm for GPS data[J]. Geophysical research letters, 1990, 17(3): 199-202. DOI: 10.1029/GL017i003p00199 [8] 雷雨, 赵丹宁. 双频相位求差法探测与修复周跳特性分析[J]. 地理空间信息, 2012, 10(5): 27-28,31. [9] 黄明江, 孙德生. 改进的电离层残差法在北斗周跳探测与修复中的应用[J]. 勘察科学技术, 2017(1): 52-54. DOI: 10.3969/j.issn.1001-3946.2017.01.012 [10] 崔立鲁, 温孝居, 余寒, 等. 基于电离层残差法的北斗周跳探测与修复研究[J]. 成都大学学报(自然科学版), 2017, 36(1): 62-65. [11] 袁鹏, 姜卫平, 张彦芬. 基于电离层残差法探测和修复周跳多值性的方法研究[J]. 测绘信息与工程, 2011, 36(6): 1-3,7. [12] 李明, 高星伟, 徐爱功. 一种改进的周跳多项式拟合方法[J]. 测绘科学, 2008(4): 82-83,99. DOI: 10.3771/j.issn.1009-2307.2008.04.027 [13] 范士杰, 陈冠旭, 刘焱雄, 等. 低高度角双频非差数据的周跳探测方法研究[J]. 武汉大学学报(信息科学版), 2016, 41(3): 310-315. [14] 张小红, 曾琪, 何俊, 等. 构建阈值模型改善TurboEdit实时周跳探测[J]. 武汉大学学报(信息科学版), 2017, 42(3): 285-292. [15] 蔡成林, 王亮亮, 刘昌盛, 等. 利用改进型TurboEdit算法进行BDS载波相位周跳检测与修复[J]. 武汉大学学报(信息科学版), 2016, 41(12): 1632-1637. [16] 严新生, 王一强, 白征东, 等. 联合使用高次差法和TurboEdit法自动探测、修复周跳[J]. 测绘通报, 2007(9): 5-9,16. DOI: 10.3969/j.issn.0494-0911.2007.09.002 [17] 王成, 王解先, 何丽娜. 利用码相二次差分与Jarque-Bera检验进行实时周跳探测[J]. 武汉大学学报(信息科学版), 2012, 37(6): 693-696. [18] HEß M P, STRINGHETTI L, HUMMELSBERGER B, et al. The ACES mission: system development and test status[J]. Acta astronautica, 2011, 69(11-12): 929-938. DOI: 10.1016/j.actaastro.2011.07.002 [19] DELVA P, MEYNADIER F, LE-PONCIN-LAFITTE C, et al. Time and frequency transfer with a microwave link in the ACES/PHARAO mission[C]// 2012 European Frequency and Time Forum. DOI: 10.1109/EFTF.2012.6502327 [20] DUCHAYNE L, WOLF P, CACCIAPUOTI L, et al. Data analysis and phase ambiguity removal in the ACES microwave link[C]// IEEE International Frequency Control Symposium, 2008. DOI: 10.1109/FREQ.2008.4623052 [21] 黄飞江, 卢晓春, 刘光灿, 等. 星地动态双向时间同步与测距算法[J]. 宇航学报, 2014, 35(9): 1050-1057. DOI: 10.3873/j.issn.1000-1328.2014.09.010