Design and verification of semi-physical simulation platform for LEO satellite navigation enhancement system
-
摘要: 低轨道地球卫星(LEO)具有相对地面几何构型变化快、播发信号链路损耗小等优点. 随着低轨卫星载荷研制与发射成本的逐渐降低,低轨卫星导航增强技术成为当前卫星导航领域的研究热点. 目前国内外的低轨导航增强技术研究均处于起步阶段,没有成熟的低轨卫星导航星座,缺乏有效的低轨导航增强系统的服务性能验证手段. 文中开展对低轨导航卫星轨道外推方法、低轨卫星信号捕获跟踪技术的研究,设计构建低轨导航增强系统半物理仿真平台. 在仿真平台的基础上对北斗/低轨增强系统组合应用的高精度快速精密定位方法进行验证,实现了精密单点定位(PPP)的快速收敛且具有较高的内符合精度,对于低轨卫星导航增强系统的建设与应用具有一定的科学与工程价值.
-
关键词:
- 低轨道地球卫星(LEO) /
- 导航增强 /
- 北斗卫星导航系统(BDS) /
- 星群实时仿真 /
- 接收机
Abstract: Low Earth Orbit Satellite (LEO) has the advantages of rapid change of geometric configuration relative to the ground and low loss of broadcast signal link. With the gradual reduction of low orbit satellite load development and launch cost, low orbit satellite navigation enhancement technology has become a research hotspot in the field of satellite navigation. At present, the research on LEO navigation enhancement technology at home and abroad is in its infancy. There is no mature LEO navigation satellite constellation, and there is no effective means to verify the service performance of LEO navigation enhancement system. In this paper, the orbit extrapolation method of LEO navigation satellite and the signal acquisition and tracking technology of LEO satellite are studied, and the semi-physical simulation platform of LEO navigation enhancement system is designed and constructed. On the basis of the simulation platform, the high-precision fast precision positioning method of the combined application of BeiDou / LEO enhancement system is verified, which realizes the rapid convergence of precision single point positioning (PPP) and has high internal coincidence accuracy. It has certain scientific and engineering value for the construction and application of LEO satellite navigation enhancement system. -
表 1 不同轨道高度低轨卫星受到的摄动力加速度量级
km/s2 轨道高度 600 km 800 km 1000 km 1200 km J2项摄动 10−5 10−5 10−6 10−6 大气阻尼 10−7~10−8 10−8~10−9 10−9~10−10 10−10~10−11 日月引力 10−8 10−8 10−8 10−8 高阶重力场摄动 10−8 10−8 10−9 10−9 太阳光压 10−10 10−10 10−10 10−10 地球固体潮 10−10 10−10 10−10 10−10 太阳反照压 10−11 10−11 10−11 10−11 相对论效应 10−11 10−11 10−11 10−11 表 2 PPP解算策略
类别 处理策略 低轨卫星星座 144颗 仿真时长/h 2 接收机位置 BJFS (39°36′31.0′′N,115°53′33.0′′E) 截止高度角/(°) 5 采样间隔/s 1 解算类型 动态PPP 电离层延迟 无电离层组合消除 接收机钟差 白噪声估计 对流层延迟 干延迟模型改正
湿延迟随机游走估计ISB 单系统不估计,多系统随机游走估计 观测值权比 伪距载噪比(100:1)
高度角定权 -
[1] 王磊, 李德仁, 陈锐志, 等. 低轨卫星导航增强技术——机遇与挑战[J]. 中国工程科学, 2020, 22(2): 144-152. [2] GENG J H, GUO J, MENG X L, et al. Speeding up PPP ambiguity resolution using triple-frequency GPS/BeiDou/Galileo/QZSS data[J]. Journal of geodesy, 2020, 94(1):6. DOI: 10.1007/s00190-019-01330-1 [3] 伍蔡伦, 树玉泉, 王刚, 等. 天象一号导航增强信号设计与性能评估[J]. 无线电工程, 2020, 50(9): 748-753. DOI: 10.3969/j.issn.1003-3106.2020.09.007 [4] 李怀建, 韦彦伯, 杜小菁. 低轨星座与低轨卫星导航算法发展现状[J]. 战术导弹技术, 2021(3): 57-66. [5] ZHOU P Y, NIE Z X, YANG X, et al. Differential code bias estimation based on uncombined PPP with LEO onboard GPS observations[J]. Advances in space research, 2020, 65(1): 541-551. DOI: 10.1016/j.asr.2019.10.005 [6] 王全平, 刘欣, 衣春轮, 等. 国外新型低轨卫星星座发展及其潜在军事应用研究[J]. 战术导弹技术, 2021(3): 67-74. [7] 李国旗, 满璇, 范振宇. 2020世界商业航天产业投融资分析[J]. 卫星应用, 2021(3): 50-55. DOI: 10.3969/j.issn.1674-9030.2021.03.012 [8] 江旭东, 陈潇, 马满帅, 等. 典型低轨卫星星座导航增强性能对比性评估研究[J]. 全球定位系统, 2021, 46(2): 49-55. DOI: 10.12265/j.gnss.2020111202 [9] 侯洪涛, 周鸿伟, 张洪, 等. 基于模型可移植性规范的导航系统性能仿真研究[C] //第一届中国卫星导航学术年会, 2010: 10. [10] CHAN W S, XU Y L, DING X L, et al. An integrated GPS–accelerometer data processing technique for structural deformation monitoring[J]. Journal of geodesy, 2006, 80(12): 705-719. DOI: 10.1007/s00190-006-0092-2 [11] 周晓青. 探测地球重力场的卫星重力梯度指标研究与分析[D]. 武汉: 武汉大学, 2016. [12] CAPON C J, SMITH B, BROWN M, et al. Effect of ionospheric drag on atmospheric density estimation and orbit prediction[J]. Advances in space research, 2019, 63(8): 2495-2505. DOI: 10.1016/j.asr.2019.01.013 [13] 高为广, 张弓, 刘成, 等. 低轨星座导航增强能力研究与仿真[J]. 中国科学:物理学 力学 天文学, 2021, 51(1): 48-58. [14] HATTEN N, RUSSELL R P. Parallel implicit runge-kutta methods applied to coupled orbit/attitude propagation[J]. Journal of the astronautical sciences, 2016, 64(4): 333–360. DOI: 10.1007/s40295-016-0103-3