Accuracy assessment of BDS-3 satellite signal-in-space
-
摘要: 针对北斗三号 (BDS-3)正式开通后的空间信号精度情况,选取2020-08-01—2021-07-31共 1 a的混合广播星历数据,以德国波茨坦地学研究中心(GFZ)和武汉大学国际GNSS服务(IGS)数据中心(WHU)提供的精密星历为参考分别从轨道精度、钟差精度和空间信号测距误差(SISRE)来进行BDS-3的空间信号精度评估. 结果表明:BDS-3的轨道精度在径向(R)、切向(A)、法向(C)三个方向上分别优于0.100 m、0.405 m、0.547 m,钟差精度优于1.926 ns,仅受轨道影响的SISRE (orb)为0.134 m,SISRE为0.612 m. 地球静止轨道(GEO)卫星的SISRE为1.137 m,倾斜地球同步轨道(IGSO)卫星和中圆地球轨道(MEO)卫星的SISRE相比GEO卫星分别减少36.3%、51.3%.
-
关键词:
- 北斗三号 (BDS-3) /
- 空间信号测距误差 /
- 轨道误差 /
- 钟差误差
Abstract: Aiming at the accuracy of the signal-in-space after BeiDou-3 (BDS-3) is officially opened, The paper selected one-year Global Navigation Satellite System (GNSS) mixed broadcast ephemeris data (from August 1st, 2020 to July 31st, 2021) and used the precision orbit and clock offset provided by the German Potsdam Geoscience Research Center (GFZ) and International Global Navigation Satellite System Service (IGS) data center of Wuhan as reference to evaluate the accuracy of the BDS-3 signal-in-space. The research showed the orbit accuracy of the BDS-3 is better than 0.100 m, 0.405 m, and 0.547 m in the radial, along-track, and cross-track respectively, and the clock error accuracy is better than 1.926 ns, and SISRE statistical accuracy only affected by the orbit error is 0.134 m, and signal-in-space range error (SISRE) statistical accuracy is 0.612 m. SISRE of the geostationary orbit (GEO) satellites is 1.137 m. Compared with the GEO satellites, and SISRE of the inclined geosynchronous orbit (IGSO) satellites and the medium earth orbit (MEO) satellites are reduced by 36.3% and 51.3% respectively.-
Key words:
- BeiDou-3 (BDS-3) /
- signal-in-space range error /
- orbit error /
- clock error
-
表 1 BDS-3精密星历信息
机构 采样间隔/min 数据来源 GFZ 5 ftp://igs.ign.fr/pub/igs/prod-ucts/mgex WHU 15 ftp://igs.gnsswhu.cn/pub/g-ps/products/mgex 表 2 BDS-3卫星轨道、星载钟、制造商和运行状态汇总
序号 PRN编号 轨道
类型星载钟
类型制造商 状态 1 19 MEO-1 铷钟 CASC 正常 2 20 MEO-2 铷钟 CASC 正常 3 21 MEO-3 铷钟 CASC 正常 4 22 MEO-4 铷钟 CASC 正常 5 23 MEO-5 铷钟 CASC 正常 6 24 MEO-6 铷钟 CASC 正常 7 25 MEO-11 氢钟 SECM 正常 8 26 MEO-12 氢钟 SECM 正常 9 27 MEO-7 氢钟 SECM 正常 10 28 MEO-8 氢钟 SECM 正常 11 29 MEO-9 氢钟 SECM 正常 12 30 MEO-10 氢钟 SECM 正常 13 32 MEO-13 铷钟 CASC 正常 14 33 MEO-14 铷钟 CASC 正常 15 34 MEO-15 氢钟 SECM 正常 16 35 MEO-16 氢钟 SECM 正常 17 36 MEO-17 铷钟 CASC 正常 18 37 MEO-18 铷钟 CASC 正常 19 38 IGSO-1 氢钟 CASC 正常 20 39 IGSO-2 氢钟 CASC 正常 21 40 IGSO-3 氢钟 CASC 正常 22 41 MEO-19 氢钟 CASC 正常 23 42 MEO-20 氢钟 CASC 正常 24 43 MEO-21 氢钟 SECM 正常 25 44 MEO-22 氢钟 SECM 正常 26 45 MEO-23 铷钟 CASC 正常 27 46 MEO-24 铷钟 CASC 正常 28 59 GEO-1 氢钟 CASC 正常 29 60 GEO-2 氢钟 CASC 正常 30 61 GEO-3 氢钟 CASC 测试 表 3 北斗卫星导航系统
$ \alpha $ 和$\;\beta$ 的取值轨道类型 $ \alpha $ $\;\beta$ MEO 0.98 54 IGSO,GEO 0.99 127 表 4 BDS-3卫星钟差精度、轨道精度、SISRE(orb)、SISRE统计值
卫星
类型卫星PRN 钟差精
度/nsR精
度/mA精
度/mC精
度/mSISTRE(orb)
/mSISRE
/mMEO C19 2.264 0.070 0.316 0.317 0.095 0.711 MEO C20 2.752 0.066 0.320 0.320 0.092 0.852 MEO C21 1.341 0.071 0.318 0.316 0.096 0.391 MEO C22 1.169 0.072 0.319 0.321 0.097 0.376 MEO C23 2.325 0.070 0.328 0.308 0.095 0.736 MEO C24 0.813 0.068 0.320 0.303 0.093 0.266 MEO C25 2.104 0.076 0.306 0.317 0.099 0.666 MEO C26 1.400 0.071 0.307 0.304 0.094 0.418 MEO C27 4.095 0.072 0.295 0.312 0.094 1.199 MEO C28 1.200 0.075 0.295 0.303 0.097 0.355 MEO C29 1.138 0.067 0.292 0.312 0.091 0.344 MEO C30 1.885 0.068 0.294 0.312 0.091 0.557 MEO C32 0.979 0.080 0.313 0.332 0.103 0.286 MEO C33 1.210 0.078 0.306 0.321 0.100 0.379 MEO C34 1.319 0.086 0.297 0.314 0.106 0.440 MEO C35 1.392 0.090 0.299 0.308 0.109 0.463 MEO C36 1.887 0.077 0.315 0.314 0.100 0.613 MEO C37 1.122 0.075 0.319 0.313 0.098 0.363 MEO C41 1.484 0.080 0.320 0.327 0.103 0.437 MEO C42 3.306 0.082 0.322 0.339 0.106 0.966 MEO C43 1.953 0.089 0.310 0.322 0.110 0.582 MEO C44 1.378 0.093 0.403 0.605 0.154 0.496 MEO C45 1.815 0.122 0.338 0.322 0.139 0.577 MEO C46 2.429 0.121 0.340 0.324 0.138 0.821 IGSO C38 2.266 0.144 0.499 0.539 0.160 0.731 IGSO C39 1.946 0.164 0.460 0.552 0.178 0.613 IGSO C40 2.434 0.161 0.445 0.487 0.172 0.828 GEO C59 3.870 0.240 1.571 3.447 0.446 1.295 GEO C60 2.578 0.274 1.191 2.949 0.419 0.979 MEO平均值 1.782 0.080 0.316 0.328 0.104 0.554 IGSO平均值 2.215 0.156 0.468 0.526 0.170 0.724 GEO平均值 3.224 0.257 1.381 3.198 0.432 1.137 BDS-3平均值 1.926 0.100 0.405 0.547 0.134 0.612 -
[1] 中国卫星导航办公室. Development of the BeiDou Navigation Satellite System (version 4.0)[R/OL]. [2021-11-10]. http://www.beidou.gov.cn/xt/gfxz/201912/P020191227430565455478.pdf [2] 陈忠贵, 武向军. 北斗三号卫星系统总体设计[J]. 南京航空航天大学学报, 2020, 52(6): 835-845. [3] LU J, GUO X, SU C G. Global capabilities of BeiDou Navigation Satellite System[J]. Satellite navigation, 2020, 1(1): 27. DOI: 10.1186/s43020-020-00025-9 [4] 刘凡, 李雷, 刘国林, 等. BDS-2与BDS-3卫星空间信号精度评估[J]. 测绘科学, 2020, 45(1): 54-61,76. [5] 刘伟平, 郝金明, 吕志伟, 等. 北斗三号空间信号测距误差评估与对比分析[J]. 测绘学报, 2020, 49(9): 1213-1221. DOI: 10.11947/j.AGCS.2020.20200266 [6] 李送强, 赵兴旺, 胡豪杰, 等. BDS-3广播星历轨道、钟差精度分析[J]. 合肥工业大学学报(自然科学版), 2021, 44(3): 407-412. [7] 王海春, 贾小林, 李鼎, 等. 北斗三号卫星广播星历精度评估分析[J]. 导航定位学报, 2019, 7(4): 60-63,74. DOI: 10.3969/j.issn.2095-4999.2019.04.011 [8] 范毅, 范顺西, 郭美军, 等. 基于北斗三号卫星空间信号精度及连续性可用性评估[C]//第十一届中国卫星导航年会, 2020. [9] 王朝辉, 马下平, 严丽, 等. 北斗三号全球卫星导航系统的广播星历精度评估[J]. 测绘通报, 2021(1): 59-65,98. [10] 杨建华, 唐成盼, 宋叶志, 等. GNSS导航电文空间信号测距误差分析[J]. 中国科学:物理学 力学 天文学, 2021, 51(1): 68-80. [11] YANG Y X, MAO Y, SUN B J. Basic performance and future developments of BeiDou Global Navigation Satellite System[J]. Satellite navigation, 2020, 1(7): 1-8. DOI: 10.1186/s43020-019-0006-0 [12] LYU Y F, GENG T, ZHAO Q L, et al. Initial assessment of BDS-3 preliminary system signal-in-space range error[J]. GPS solutions, 2019, 24(1): 16. DOI: 10.1007/s10291-019-0928-x [13] CHEN J P, HU X G, TANG C P, et al. SI-S accuracy and service performance of the BDS-3 basic system[J]. Science china:physics, mechanics and astronomy, 2020, 63(6): 269511. DOI: 10.1007/s11433-019-1468-9 [14] 许扬胤, 杨元喜, 曾安敏, 等. 北斗三号全球系统空间信号精度评估分析[J]. 大地测量与地球动力学, 2020, 40(10): 1000-1006. [15] ZHANG Y Z, KUBO N, CHEN J P, et al. Initial positioning assessment of BDS new satellites and new signals[J]. Remote sensing, 2019, 11(11): 1320. DOI: 10.3390/rs11111320 [16] XUE B, WANG H T, YUAN Y B. Performance of BeiDou-3 signal-in-space ranging errors: accuracy and distribution[J]. GPS solutions, 2021, 25(1): 23. DOI: 10.1007/s10291-020-01057-z [17] 陶清瑞, 贾小林, 王利军, 等. GNSS空间信号精度的研究分析[J]. 测绘工程, 2021, 30(1): 24-29. [18] 肖健, 史俊波, 欧阳晨皓, 等. 2019—2020年北斗三号广播星历长期性能分析[C]//第十二届中国卫星导航年会, 2021. [19] JIAO G Q, SONG S L, LIU Y Y, et al. Analysis and assessment of BDS-2 and BDS-3 broadcast ephemeris: accuracy, the datum of broadcast clocks and its impact on single point positioning[J]. Remote sensing, 2020, 12(13): 2081. DOI: 10.3390/rs12132081 [20] ZHANG H F, LONG M L, YANG H F, et al. 北斗导航系统卫星激光测距综述(英文)[J]. 中国航天:英文版, 2020, 21(4): 31-41. [21] CHENG P F, CHENG Y Y, WANG X M, et al. Update China geodetic coordinate frame considering plate motion[J]. Satellite navigation, 2021, 2(1): 2. DOI: 10.1186/s43020-020-00032-w [22] 席克伟, 王小亚, 张言, 等. IGS14地球参考框架更新及其对GPS精密定轨的影响[J]. 测绘科学, 2020, 45(8): 26-32,40. [23] HAN C H, LIU L, CAI Z W, et al. The space–time references of BeiDou Navigation Satellite System[J]. Satellite navigation, 2021, 2(1): 253-562. DOI: 10.1186/S43020-021-00044-0 [24] 许国昌, 许艳. GPS理论、算法与应用[M]. 3版.北京: 科学出版社, 2017. [25] 中国卫星导航系统管理办公室测试评估研究中心. 卫星参数[R/OL]. [2021-11-10]. http://satellite.nsmc.org.cn/portalsite/Satellite/Satelliteinfo.aspx?satellitetype=0&usedtype=oneline&satecode=FY3B# [26] JOHNSTON G M, RIDELL A, HAUSLER G. The international GNSS service[Z]. Springer handbook of Global Navigation Satellite Systems, 2017: 967-982. DOI: 10.1007/978-3-319-42928-1_33 [27] 赵立都. BDS完好性监测和可用性评估[D]. 西安: 长安大学, 2016. [28] GUO J, ZHAO Q L, WANG C. Multi-GNSS analysis at Wuhan University: attitude, solar radiation pressure, phase center, and more[Z/OL]. [2021-11-10]. https://www.researchgate.net/project/Multi-GNSS-analysis-at-Wuhan-University-attitude-solar-radiation-pressure-phase-center-and-more [29] 张勤, 燕兴元, 黄观文, 等. 北斗卫星天线相位中心改正模型精化及对精密定轨和定位影响分析[J]. 测绘学报, 2020, 49(9): 1101-1111. DOI: 10.11947/j.AGCS.2020.20200289 [30] 张柔, 胡志刚, 陶钧, 等. 顾及不同天线相位中心改正模型的北斗空间信号精度评估方法[J]. 武汉大学学报(信息科学版), 2019, 44(6): 806-813. [31] MONTENBRUCK O, STEIGENBERGER P, HAUSCHILD A. Multi-GNSS signal-in-space range error assessment–methodology and results[J]. Advances in space research, 2018, 61(12): 3020-3038. DOI: 10.1016/j.asr.2018.03.041 [32] MONTENBRUCK O, STEIGENBERGER P, HAUSCHILD A. Broadcast versus precise ephemerides: a multi-GNSS perspective[J]. GPS solutions, 2015, 19(2): 321-333. DOI: 10.1007/s10291-014-0390-8 [33] 中国卫星导航系统管理办公室测试评估研究中心. 服务性能[R/OL]. [2021-11-10]. http://www.csno-tarc.cn/performance/sisre [34] TU R, ZHANG R, ZHANG P F, et al. Recover the abnormal positioning, velocity and timing services caused by BDS satellite orbital maneuvers[J]. Satellite navigation, 2021, 2(1): 227-237. DOI: 10.1186/s43020-021-00048-w [35] WANG B H, ZHOU J H, WANG B, et al. Influence of the GEO satellite orbit error fluctuation correction on the BDS WADS zone correction[J]. Satellite navigation, 2020, 1(1): 18. DOI: 10.1186/s43020-020-00020-0