Multi-GNSS clock combination with satellite attitude correction
-
摘要: 国际GNSS服务(IGS)提供的GPS综合产品被广泛应用于各种高精度科学研究中. 随着各国卫星导航系统的发展,亟需研究针对多系统全球卫星导航系统(GNSS)产品的综合策略. 由于卫星姿态与钟差相互耦合,综合钟差时额外考虑姿态改正将进一步提高综合产品精度,因此研究了一种顾及卫星姿态的GNSS钟差综合策略,改正姿态后GPS综合残差最大可减小80%. 对142个IGS测站进行精密单点定位(PPP)解算发现,综合产品比单个分析中心产品更加稳定,东(E)、北(N)、高(U)方向的动态定位精度最大可提升22.7%、16.7%和18.3%. 相对于未顾及姿态改正的综合产品,顾及姿态改正的综合产品的动态定位精度最大可提升65.3%.
-
关键词:
- 多系统全球卫星导航系统(GNSS) /
- 钟差综合 /
- 姿态 /
- 钟差一致性 /
- 精密单点定位(PPP)
Abstract: International GNSS Service (IGS) has been continuously providing high-precision combined GPS orbit and clock products, which is widely used in various scientific research and operational applications. However, with the prosperity of Global Navigation Satellite System (GNSS), combination strategies of multi-GNSS (GPS, GLONASS, Galileo and BDS) products is now urgently needed. Besides, due to the coupling relationship between satellite attitudes and clocks, the clock consistency during combination can be further improved by considering attitude differences. Therefore, we proposed a multi-GNSS clock combination strategy considering attitude correction. It is found that GPS clock combination residuals can be reduced by 80% at most after applying attitude correction. Additionally, we conducted static and kinematic positioning for 142 globally distributed stations using the combined products. Compared to the products provided by a single analysis center, the GPS/GLONASS/Galileo combined products are more stable and can improve the positioning quality up to 22.7%, 16.7% and 18.3% for the three components during kinematic positioning. Adding attitude corrections during clock combination can improve the kinematic positioning accuracy up to 65.3% at a single station. -
表 1 各分析中心卫星姿态产品情况
分析中心 卫星系统 采样率 CODE GRE 15 min ESA / / GRG GRE 30 s JPL G 30 s TUG GRE 30 s IGS GRE 30 s 表 2 GPS/Galileo/GLONASS 钟差一致性
ps 卫星系统 钟差一致性 改正姿态 未改正姿态 GPS 8.0 8.7 Galileo 6.5 6.5 GLONASS 40.8 40.9 -
[1] ZUMBERGE J F, HEFLIN M B, JEFFERSON D C, et al. Precise point positioning for the efficient and robust analysis of GPS data from large networks[J]. Journal of geophysical research:solid earth, 1997, 102(B3): 5005-5017. DOI: 10.1029/96JB03860 [2] MONTENBRUCK O, STEIGENBERGER P, PRANGE L, et al. The multi-GNSS experiment (MGEX) of the International GNSS Service (IGS)-achievements, prospects and challenges[J]. Advances in space research, 2017, 59(7): 1671-1697. DOI: 10.1016/j.asr.2017.01.011 [3] PRANGE L, ORLIAC E, DACH R, et al. CODE’s five-system orbit and clock solution-the challenges of multi-GNSS data analysis[J]. Journal of geodesy, 2017, 91(4): 345-360. DOI: 10.1007/s00190-016-0968-8 [4] UHLEMANN M, GENDT G, RAMATSCHI M, et al. GFZ global multi-GNSS network and data processing results[M]. IAG 150 Years, Springer International Publishing, 2016: 673–679. DOI: 10.1007/1345_2015_120 [5] GUO J, XU X L, ZHAO Q L, et al. Precise orbit determination for quad-constellation satellites at Wuhan University: strategy, result validation, and comparison[J]. Journal of geodesy, 2016, 90(2): 143-159. DOI: 10.1007/s00190-015-0862-9 [6] LOYER, S, BANVILE S, GENG J H, et al. Exchanging satellite attitude quaternions for improved GNSS data processing consistency[J]. Advances in space research, 2021, 68(6): 2441-2452. DOI: 10.1016/j.asr.2021.04.049 [7] KOUBA J, MIREAULT Y, LAHAYE F. IGS orbit, clock combination and evaluation, appendix I of the analysis coordinator report, international GPS service for geodynamics 1994 Annual Report[R]. Jet propulsion laboratory publication, 1994: 70-94. [8] KOUBA J, SPRINGER T. New IGS station and satellite clock combination[J]. GPS solutions, 2001, 4(4): 31-36. DOI: 10.1007/PL00012863 [9] KOUBA J. A guide to using international GNSS service (IGS) products[Z/OL]. (2021-10-07) [2021-11-11]. 2009. http://www.acc.igs.org/UsingIGSProductsVer21.pdf [10] FRITSCHE M. Multi-GNSS orbit and clock combination: preliminary results[C]//EGU General Assembly Conference Abstracts, 2016. [11] 陈康慷, 徐天河, 杨玉国, 等. iGMAS GNSS 钟差产品综合与评估[J]. 测绘学报, 2016, 45(增刊2): 46-53. [12] SAKIC P, MANSUR G, MÄNNEL B. A prototype for a Multi-GNSS orbit combination[J]. Galileo geodetic service provider, 2020: 1-11. DOI: 10.13140/RG.2.2.31736.60163 [13] 王晨, 郭靖, 赵齐乐. 偏航姿态对 GPS 和 GLONASS 精密轨道和钟差的影响[J]. 武汉大学学报 (信息科学版), 2017, 42(5): 624-629. [14] 周江文, 黄幼才, 杨元喜. 抗差最小二乘法 [M]. 武汉: 华中理工大学出版社, 1997. [15] HAUSCHILD A. Precise GNSS clock-estimation for real-time navigation and precise point positioning[R]. DLR Deutsches Zentrum fur Luft-und Raumfahrt e.V.—Forschungsberichte, 2011. DOI: 10.1002/bab.1059