Calibrate inter-channel bias in GLONASS/BDS combined pseudorange positioning
-
摘要: 由于俄罗斯的GLONASS卫星间频率存在差异,测站硬件延迟误差无法被接收机钟差参数吸收,提出为每颗卫星估计一个通道延迟改正参数的方法,以提升GLONASS/BDS组合伪距定位精度. 实验表明:加入通道延迟改正能有效降低GLONASS定位误差,改正后东(E)、北(N)、天顶(U)方向误差的均方根(RMS)值分别减小了0.43 m、0.69 m、0.73 m,并且改正效果长期有效. 在测站北斗卫星导航系统(BDS)观测效果有限时,GLONASS/BDS双系统组合伪距定位较BDS单系统性能更佳,改正通道延迟后,能进一步提升双系统定位性能,改正后E、N、U方向的误差RMS值分别减小了0.37 m、0.28 m、0.5 m.Abstract: Because of the frequency difference between GLONASS satellites, the hardware bias of the station cannot be absorbed by the receiver clock bias parameter. We presents a method to estimate a inter-channal bias for each satellites to improve the accuracy of combined GLONASS/BDS pseudorange standard point positioning. The solutions show that adding pseudorange ICB calibration can effectively reduce GLONASS positioning error, and the root mean square (RMS) value of east(E), north(N), and up (U) components error after calibration is reduced by 0.43 m, 0.69 m, 0.73 m, respectively, and the calibration effect is long-term effective. When the BeiDou Navigation Satellite System (BDS) observation conditions of the station is limited, the combined GLONASS/BDS pseudorange standard point positioning is effective in improve accuracy positioning. After calibrating inter-channal bias, dual-system positioning accuracy is further improved. And the RMS values of E, N, U components error are reduced by 0.37 m, 0.28 m, and 0.5 m, respectively.
-
表 1 测站接收机及天线配置情况
测站 接收机类型 接收机版本号 天线类型 SCRZ LEICA GR10 4.12/6.712 LEIAR10 表 2 卫星与频率对应关系
频率号 同频卫星1 同频卫星2 SLOT/FRQ 1 R08 R04 6 2 R07 R03 5 3 R21 R17 4 4 R23 R19 3 5 R24 R20 2 6 R05 R01 1 7 R15 R11 0 8 R16 R12 −1 9 R13 R09 −2 10 R22 R18 −3 11 R06 R02 −4 12 R14 R10 −7 表 3 改正通道延迟前后的定位精度统计
m 通道延迟 误差 E N U 改正前 RMS 10.42 7.58 11.15 $\sigma $ 5.72 6.53 7.42 改正后 RMS 9.99 6.89 10.42 $\sigma $ 4.94 5.69 6.95 表 4 单系统与双系统定位精度统计
m 卫星系统 误差 E N U BDS RMS 8.40 6.96 8.21 $\sigma $ 8.33 6.94 8.20 GLONASS/BDS RMS 7.84 5.79 8.17 $\sigma $ 5.04 5.51 6.82 改正通道延迟GLOANSNS/BDS RMS 7.47 5.51 7.67 $\sigma $ 4.58 5.21 6.19 -
[1] 杜文选, 刘扬, 耿加伟. 多GNSS融合伪距单点定位算法及其程序实现[J]. 测绘与空间地理信息, 2017, 40(9): 47-51. DOI: 10.3969/j.issn.1672-5867.2017.09.011 [2] 王冲. 基于高动态GNSS伪距数据的单点定位精度分析[C]//第八届中国卫星导航学术年会论, 2017. [3] GE Y L, ZHOU F, SUN B Q, et al. The impact of satellite time group delay and inter-frequency differential code bias corrections on multi-GNSS combined positioning[J]. Sensors, 2017, 17(3): 602. DOI: 10.3390/s17030602 [4] ROBACH U. Positioning and navigation using the Russian satellite system GLONASS[M]. Universität der Bundeswehr München, Studiengang Geodäsie und Geoinformationen, 2000. [5] SHI C, YI W T, SONG W W, et al. GLONASS pseudorange inter-channel biases and their effects on combined GPS/GLONASS precise point positioning[J]. GPS solutions, 2013, 17(4): 439-451. DOI: 10.1007/s10291-013-0332-x [6] CAI C S, GAO Y. Acombined GPS/GLONASS navigation algorithm for use with limited satellite visibility[J]. Journal of neuroscience, 2009, 62(4): 671-685. DOI: 10.1017/S0373463309990154 [7] 魏二虎, 刘学习, 刘经南. 北斗+GPS组合单点定位精度评价与分析[J]. 测绘通报, 2017(5): 1-5. [8] 于龙昊, 丁克良, 刘亚杰, 等. 不同环境下BDS/GPS组合动态定位性能分析[J]. 全球定位系统, 2018, 43(1): 70-74. [9] ANGRISANO A, GAGLIONE S, GIOIA C. Performance assessment of GPS/GLONASS single point positioning in an urban environment[J]. Acta geodaetica et geophysica hungarica, 2013, 48(2): 149-161. DOI: 10.1007/s40328-012-0010-4 [10] 王涛. GPS/GLONASS/BDS多模融合伪距单点定位模型精度分析[J]. 全球定位系统, 2017, 42(3): 32-37. [11] 李鹤峰, 党亚民, 秘金钟, 等. BDS与GPS、GLONASS多模融合导航定位时空统一[J]. 大地测量与地球动力学, 2013, 33(4): 73-78. [12] 石明旺. GPS/GLONASS/BDS组合导航定位主要算法研究[D]. 重庆: 重庆大学, 2017. [13] 刘姣, 陈俊平, 王彬. 估计卫星频间偏差的GLONASS伪距定位改进模型及其验证[J]. 大地测量与地球动力学, 2021, 41(1): 27-33. [14] 布金伟, 左小清, 金立新, 等. BeiDou+GLONASS+Galileo多系统组合SPP稳定性和精度分析[J]. 测绘通报, 2018(9): 13-18,23. [15] RINEX-The receiver independent exchange format Version 3.02. IGS[S]. RINEX Working Group and Radio Technical Commission for MARitime Services Special Committee 104(RTCM-SC104), 2013. [16] 北斗卫星导航定位系统空间信号接口控制文件公开服务信号(2.0版)[S]. 中国卫星导航系统管理办公室, 2013. [17] International GNSS Service[DS/OL]. [2021-06-12]. ftp: //igs. ensg. ign. fr/pub/igs/products/ [18] SHI J B, OUYANG C H, HUANG Y S, et al. Assessment of BDS-3 global positioning service: ephemeris, SPP, PPP, RTK, and new signal[J]. GPS solutions, 2020, 24(3): 1-4. DOI: 10.1007/s10291-020-00995-y [19] 杨毅, 胡洪, 解雪峰, 等. BDS-3/GPS在遮挡环境下定位性能分析[J]. 全球定位系统, 2021, 46(3): 104-110. DOI: 10.12265/j.gnss.2020120301 [20] 王朝辉, 马下平, 严丽, 等. 北斗三号全球卫星导航系统的广播星历精度评估[J]. 测绘通报, 2021(1): 59-65,98. [21] 郭际明, 孟祥广, 李宗华, 等. GLONASS卫星广播星历精度分析[J]. 大地测量与地球动力学, 2011, 31(1): 68-71.