Analysis on the earth rotation parameters under different means
-
摘要: 随着甚长基线干涉测量(VLBI)、卫星激光测距(SLR)、激光测月(LLR)、全球卫星导航系统(GNSS)、多里斯系统(DORIS)等多种空间大地测量手段的使用,地球自转参数(ERP)的测量精度不断提高,为航天器导航、深空探测等诸多领域提供了高精度的国际天球参考系(ICRS)和国际地表参考系统(ITRS)之间的转换参数. 以国际地球自转与参考系服务发布的C04序列为基础序列,选取500天ERP序列,分析不同测量手段得到的ERP数据的误差分布情况,为研究利用不同数据之间的一致性进行精度检核的可行性及精度水平提供数据基础,同时也为ERP预报提供更多的数据选择.
-
关键词:
- 地球自转参数(ERP) /
- 极移 /
- UT1-UTC /
- 日长变化
Abstract: With the use of various space geodetic methods such as very long baseline interferometry (VLBI), satellite laser ranging (SLR), lunar laser ranging (LLR), Global Navigation Satellite System (GNSS), Doppler orbitograph and radio positioning integrated by satellite (DORIS), etc., the measurement accuracy of earth rotation parameters (ERP) has been continuously improved. It provides high-precision conversion parameters between the International Celestial Reference System (ICRS) and the International Terrestrial Reference System (ITRS) for many fields such as spacecraft navigation and deep space exploration.This article mainly uses the C04 sequence published by the International Earth Rotation and Reference System Service as the basic sequence, the 500 days ERP sequence was selected and the error distribution of the ERP data obtained by different measurement methods was analyzed. It provides data basis for studying the feasibility and accuracy level of accuracy checking by using the consistency between different data, and also provides more data options for ERP forecasts.-
Key words:
- earth rotation parameters (ERP) /
- polar motion /
- UT1-UTC /
- length of day (LOD)
-
表 1 几种ERP参数内容及数据发布
类型 极移 UT1-UTC LOD 更新频率 滞后时间 IGU √ √ √ 6 h 3~9 h IGR √ √ √ 1天 17~41 h IGS √ √ √ 7天 11~17天 IDS √ × × 1天 - IVS √ √ √ 每周2次 15天 ILRS √ × √ 1天 1天 注:√为包含此项,×表示无此项内容 表 2 IGS发布ERP参数误差统计
类型 参数 PMX/mas PMY/mas UT1-UTC/ms LOD/ms IGU 最大值 0.249 0.173 0.197 1 0.042 3 最小值 −0.125 −0.312 −0.177 7 −0.033 7 平均值 0.045 −0.014 −0.011 7 1.66×10–4 标准差 0.056 0.044 0.049 9 0.010 8 IGR 最大值 0.343 0.217 0.159 3 0.027 7 最小值 −0.209 −0.279 −0.182 2 −0.027 8 平均值 0.053 −0.041 −0.011 6 −1.81×10−5 标准差 0.094 0.069 0.050 2 0.009 8 IGS 最大值 0.303 0.193 0.072 3 0.029 5 最小值 −0.195 −0.234 −0.112 6 −0.028 9 平均值 0.021 −0.025 −0.007 9 1.98×10−4 标准差 0.089 0.064 0.031 6 0.010 1 表 3 Bulletin A快速解ERP参数误差统计
参数 PMX/mas PMY/mas UT1-UTC/ms 最大值 0.195 0.088 0.073 1 最小值 −0.106 −0.175 −0.093 0 平均值 0.029 −0.041 −0.003 4 标准差 0.054 0.041 0.023 9 表 4 IVS/ILRS/IDS发布ERP序列误差统计
类型 参数 PMX/
masPMY/
masDUT1/ms LOD/ms IDS 最大值 0.712 0.496 0 - - 最小值 −0.607 −0.559 0 - - 平均值 0.078 −0.000 4 - - 标准差 0.204 0.201 0 - - IVS 最大值 1.666 0.861 0 0.213 0 0.231 6 最小值 −1.483 −0.702 0 −0.239 2 −0.176 8 平均值 0.053 −0.014 0 −0.004 0 −0.002 2 标准差 0.057 0.223 0 0.052 9 0.055 0 ILRS 最大值 0.875 0.449 0 - 0.129 9 最小值 −0.587 −0.612 0 - −0.065 7 平均值 0.205 −0.005 0 - 0.004 1 标准差 0.205 0.167 0 - 0.024 9 -
[1] 乔书波, 李金岭, 柴洪洲, 等. 天球参考架的稳定源选取及其最新实现[J]. 测绘学报, 2010, 39(2): 120-128. [2] 张捍卫, 许厚泽, 王爱生. 天球参考系与地球参考系之间的坐标转换研究进展[J]. 测绘科学, 2005, 30(5): 105-109. DOI: 10.3771/j.issn.1009-2307.2005.05.038 [3] WEI E H, JIN S G, YANG H Z, et al. Simulation and results on real-time positioning of Chang’E-3 rover with the same-beam VLBI observations[J]. Planetary and space science, 2013(84): 20-27. DOI: 10.1016/j.pss.2013.04.005 [4] 韩恒星, 党亚民, 许长辉, 等. 地球自转参数的LS+AR超短期预报方法[J]. 测绘通报, 2017(7): 1-4. [5] 宁津生, 刘经南, 陈俊勇, 等. 现代大地测量理论与技术[M]. 武汉: 武汉大学出版社, 2006: 170-171. [6] PEARLMAN M R, DEGNAN J J, BOSWORTH J M. The international laser ranging service[J]. Advances in space research, 2002, 30 (2): 135-143. DOI: 10.1016/S0273-1177(02)00277-6 [7] DOW J M, NEILAN R E, RIZOS C. The International GNSS service in a Changing landscape of Global Navigation Satellite Systems[J]. Journal of geodesy, 2009, 83 (3): 191-198. DOI: 10.1007/s00190-008-0300-3 [8] WILLIS P, FAGARD H, FERRAGE P, et al. The international DORIS service (IDS): toward maturity[J]. Advances in space research, 2010, 45 (12) :1408–1420. DOI: 10.1016/j.asr.2009.11.018 [9] SCHUH H, BEHREND D. VLBI: a fascinating technique for geodesy and astrometry[J]. Journal of geodynamic, 2012, 61: 68-80. DOI: 10.1016/j.jog.2012.07.007 [10] BIANCO G, DEVOTI R, LUCERI V, Combination of loosely constrained solutions[J/OL]. [2021-10-10]. IERS technical note, 2003(30): 107-109. https://www.researchgate.net/profile/Roberto-Devoti/publication/252698425_Combination_of_loosely_constrained_solutions/links/02e7e535f8036d983b000000/Combination-of-loosely-constrained-solutions.pdf [11] PETIT G, LUZUM B. IERS conventions (2010): IERS Technical Note 36 [R]. Germany: Verlag des Bundesamts fur Kartographie und Geodasie. [12] LUZUM B J, JIM R R, CARTER M S, et al. Recent improvements to IERS bulletin a combination and predicion[J]. GPS solutions, 2001, 4(3): 34-40. DOI: 10.1007/PL00012853 [13] MCCARTHY D D, LUZUM B J. Prediction of earth orientation[J]. Bulletin géodésique, 1991, 65(1): 18-21. DOI: 10.1007/BF00806338 [14] Gambis D, Luzum B J. Earth rotation monitoring, UT1 determination and prediction[J]. Metrologia, 2011, 48(4): S165-S170. DOI: 10.1088/0026-1394/48/4/S06 [15] 陈少杰, 高玉平, 时春霖, 等. 顾及A公报影响的天文测量精度分析[J]. 西南交通大学学报, 2021, 56(2): 331-338. [16] IGS. IGS Earth Rotation [EB/OL]. [2021-10-10]. https://cddis.nasa.gov/archive/gnss/products/igs00p03.erp.Z [17] IGS. IGS Earth Rotation [EB/OL]. [2021-10-10]. ftp://lox.ucsd.edu/archive/garner/products/igu00p01.erp.Z [18] BIANCO G, LUCERI V, SCIARRETTAC, The ILRS standard products: a quality assessment[C]// The 15th International Workshop on Laser Ranging , 2006. [19] ILRS. ILRS EOP Series[EB/OL]. [2021-10-10]. ftp: //edc. dgfi. tum. de/pub/slr/products/pos+eop/ [20] IDS. IDS EOP Series[EB/OL]. [2021-10-10]. ftp: // ids-doris. org/pub/ids/products/eop/ids19wd01. eop. Z [21] IVS. IVS EOP Series[EB/OL]. [2021-10-10]. ftp: //ivs. bkg. bund. de/pub/vlbi/ivsproducts/eops/ivs20r1X. eops. gz