留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GNSS大气海洋遥感技术研究进展

安豪 严卫 杜晓勇 卞双双

安豪, 严卫, 杜晓勇, 卞双双. GNSS大气海洋遥感技术研究进展[J]. 全球定位系统, 2021, 46(6): 1-10. doi: 10.12265/j.gnss.2021101303
引用本文: 安豪, 严卫, 杜晓勇, 卞双双. GNSS大气海洋遥感技术研究进展[J]. 全球定位系统, 2021, 46(6): 1-10. doi: 10.12265/j.gnss.2021101303
AN Hao, YAN Wei, DU Xiaoyong, BIAN Shuangshuang. Research progress of GNSS atmosphere-ocean remote sensing technology[J]. GNSS World of China, 2021, 46(6): 1-10. doi: 10.12265/j.gnss.2021101303
Citation: AN Hao, YAN Wei, DU Xiaoyong, BIAN Shuangshuang. Research progress of GNSS atmosphere-ocean remote sensing technology[J]. GNSS World of China, 2021, 46(6): 1-10. doi: 10.12265/j.gnss.2021101303

GNSS大气海洋遥感技术研究进展

doi: 10.12265/j.gnss.2021101303
基金项目: 国家自然科学基金(41805026);地理信息工程国家重点实验室自主研究课题 (SKLGIE2019-ZZ-2)
详细信息
    作者简介:

    安豪:(1990—),男,博士,工程师,研究方向为GNSS信号非导航应用

    严卫:(1961—),男,博士,教授,研究方向为大气海洋空间环境遥感

    杜晓勇:(1974—),男,博士,副研究员,研究方向为GNSS气象学

    通讯作者:

    安豪 E-mail:13770997977@163.com

  • 中图分类号: P228;P407

Research progress of GNSS atmosphere-ocean remote sensing technology

  • 摘要: 全球卫星导航系统(GNSS)信号资源的大气海洋遥感技术一直是一个研究热点. 伴随着GNSS系统的建设和发展,相继出现了利用GNSS延迟信号、反射信号、掩星信号、极化信号获取大气和海洋环境参数的一系列新技术新方法. 在回顾GNSS大气海洋遥感技术概况的基础上,先后概述了GNSS延迟信号(GNSS-D)技术、GNSS反射测量(GNSS-R)技术、GNSS无线电掩星(GNSS-RO)技术、GNSS极化掩星(GNSS-PRO)技术的基本原理,比较全面系统地分析了其国内外研究和应用方面的现状及最新进展,特别是新兴GNSS-PRO技术的机理、优势及发展现状. 最后对该研究领域的发展前景进行了一些探讨,相关技术的突破和发展必将在气象、水文、海洋、陆地、空间环境等地球科学领域发挥越来越重要的作用.

     

  • 图  1  GNSS-D信号传播示意图

    图  2  GNSS-R信号传播示意图

    图  3  GNSS-RO信号传播示意图

    图  4  低轨卫星接收GNSS-PRO信号监测强降雨原理示意图[4]

    图  5  PAZ卫星[96]

    图  6  外场试验中GNSS双极化降雨监测系统的户外天线部分[104]

  • [1] 李国平. 地基GPS气象学[M]. 北京: 科学出版社, 2010.
    [2] JIN S G, CARDELLACH E, XIE F Q. GNSS remote sensing: theory, methods and applications [M]. Springer, Germany, 2014: 17-240.
    [3] 张京江, 楚艳丽. 滑动时间窗技术在地基GPS数据实时解算中的应用[J]. 气象科技, 2014, 42(2): 204-207. DOI: 10.3969/j.issn.1671-6345.2014.02.004
    [4] CARDELLACH E, RIUS A, CEREZO F. Polarimetric GNSS radio-occultations for heavy rain detection[C]// IEEE International Geoscience and Remote Sensing Symposium, 2010: 3841-3844. DOI: 10.1109/IGARSS.2010.5650907
    [5] 郭志梅, 李黄, 缪启龙. GPS探测气象参数的技术进展[J]. 气候与环境研究, 2008, 13(2): 212-224.
    [6] BEVIS M, BUSINGER S, CHISWELL S, et al. GPS meteorology: mapping zenith wet delays onto precipitable water[J]. Journal of applied meteorology, 1994, 33(3): 379-386. DOI: 10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2
    [7] DUAN J P, BEVIS M, FANG P, et al. GPS meteorology: direct estimation of the absolute value of precipitable water vapor[J]. Journal of application meteorology, 1996, 35(6): 830-838. DOI: 10.1175/1520-0450(1996)035<0830:GMDEOT>2.0.CO;2
    [8] TREGONING P, BOERS R, O'BRIEN D, et al. Accuracy of absolute precipitable water vapor estimates from GPS observations[J]. Journal of geophysical research atmospheres, 1998, 103(D22): 28701-28710. DOI: 10.1029/98jd02516
    [9] BRAUN J J, ROCKEN C, LILJEGREN J C. Comparisons of line-of-sight water vapor observations using the Global Positioning System and a pointing microwave radiometer[J]. Journal of atmospheric and oceanic technology, 2003, 20(5): 606-612. DOI: 10.1175/1520-0426(2003)202.0.CO
    [10] CHAMPOLLIONA C, MASSONA F, BOUIN N N, et al. GPS water vapor tomography: preliminary results from the ESXOMPTE field experiment[J]. Atmospheric research, 2005, 74(1): 253-274. DOI: 10.1016/j.atmosres.2004.04.003
    [11] PERLER D, GEIGER A, HURTER F. 4D GPS water vapor tomography: new parameterized approaches[J]. Journal of geodesy, 2011, 85(8): 539-550. DOI: 10.1007/s00190-011-0454-2
    [12] 毛节泰. GPS的气象应用[J]. 气象科技, 1993(4): 45-49.
    [13] 李成才, 夏青. 全球定位系统遥感水汽总量[J]. 科学通报, 1999, 44(3): 333-336. DOI: 10.3321/j.issn:0023-074X.1999.03.024
    [14] 郭志梅. 利用地基GPS资料反演大气可降水量的初步研究[D]. 南京: 南京信息工程大学, 2005.
    [15] 宋淑丽. 地基GPS网对水汽三维分布的监测及其在气象学中的应用[D]. 上海: 中国科学院上海天文台, 2004.
    [16] 毕研盟, 杨光林, 聂晶. 基于Kalman滤波的GPS水汽层析方法及其应用[J]. 高原气象, 2011, 30(1): 109-114.
    [17] 吴旭祥, 郭秋英, 侯建辉. 基于BDS精密星历产品的水汽探测性能分析[J]. 全球定位系统, 2019, 44(5): 91-99.
    [18] 郭秋英, 侯建辉, 刘传友, 等. 基于北斗三号的大气水汽探测性能初步分析[J]. 全球定位系统, 2021, 46(1): 89-97,11. DOI: 10.12265/j.gnss.2020090802
    [19] LANYI G E, ROTH T. A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations[J]. Radio science, 1988, 23(4): 483-492. DOI: 10.1029/RS023i004p00483
    [20] MANNUCCI A J, WILSON B D, EDWARDS C D. A new method for monitoring the earth’s ionospheric total electron content using the GPS global network[J]. Proceedings institute of navigation, 1993: 1323-1332. DOI: 10.2307/1324176
    [21] HERNÁNDEZ-PAJARES M. IGS ionosphere WG status report: performance of IGS ionosphere TEC maps position paper[J/OL]. [2021-09-30]. Pajares, 2004. https://www.researchgate.net/publication/237789274_Performance_of_IGS_Ionosphere_TEC_Maps.
    [22] YUAN Y B, HUO X L, OU J K, et al. Refining the Klobuchar ionospheric coefficients based on GPS observations[J]. IEEE transactions on aerospace and electronic systems, 2008, 44(4): 1498-1510. DOI: 10.1109/TAES.2008.4667725
    [23] KUNITSYN V E, ANDIREEVA E S, RAZINKOV O G. Possibilities of the near-space environment radio tomography[J]. Radio science, 1997, 32(5): 1953-1963. DOI: 10.1029/97RS00837
    [24] HOWE B M, RUNCIMAN K, SECAN J A. Tomography of the ionosphere: four-dimensional simulations[J]. Radio science, 1998, 33(1): 109-128. DOI: 10.1029/97RS02615
    [25] 盛传贞, 张京奎, 张宝成. 不同全球电离层格网产品在中国区域的应用精度评估与分析[J]. 全球定位系统, 2021, 46(4): 8-15. DOI: 10.12265/j.gnss.2021012703
    [26] 刘经南. 广域差分GPS原理和方法[M]. 北京: 测绘出版社, 1999.
    [27] 张小红, 李征航, 蔡昌盛. 用双频GPS观测值建立小区域电离层延迟模型研究[J]. 武汉大学学报(信息科学版), 2001, 26(2): 140-143,159.
    [28] 柳景斌, 王泽民, 王海军, 等. 利用球冠谐分析方法和GPS数据建立中国区域电离层TEC模型[J]. 武汉大学学报(信息科学版), 2008, 33(8): 792-795,814.
    [29] 任晓东. 多系统GNSS电离层TEC高精度建模及差分码偏差精确估计[D]. 武汉: 武汉大学, 2017.
    [30] 徐继生, 邹玉华. 时变三维电离层层析成像重建公式[J]. 地球物理学报, 2003, 46(4): 438-445. DOI: 10.3321/j.issn:0001-5733.2003.04.002
    [31] 吴寒, 姚宜斌, 陈鹏, 等. GNSS电离层层析成像算法研究[J/OL]. 武汉大学学报(信息科学版), 2013, 38(12): 1405-1408.
    [32] 霍星亮, 袁运斌, 欧吉坤, 等. 顾及电离层变化的层析反演新算法[J]. 地球物理学报, 2016, 59(7): 2393-2401. DOI: 10.6038/cjg20160706
    [33] MARTIN-NEIRA M. A passive reflectometry and interferometry system (PARIS): application to ocean altimetry[J/OL]. [2021-09-30]. ESA journal, 1993, 17(4): 331-355. https://www.researchgate.net/publication/279897829_A_Passive_Reflectometry_and_Interferometry_System_PARIS_Application_to_ocean_altimetry
    [34] LIN B, KATZBERG S J, GARRISON J L, et al. Relationship between GPS signals reflected from sea surfaces and surface winds: modeling results and comparisons with aircraft measurements[J]. Journal of geophysical research, 1999, 104(C9): 20713-20727. DOI: 10.1029/1999JC900176
    [35] 周晓中. GNSS-R海洋遥感原理与方法研究[D]. 南京: 解放军理工大学, 2010.
    [36] ZAVOROTNY Z U, VORONOVICH A G, KATZBERG S J, et al. Extraction of sea state and wind speed from reflected GPS signals: modeling and aircraft measurements [C]//Geoscience and Remote Sensing Symposium, 2000: 1507-1509. DOI: 10.1109/IGARSS.2000.857255
    [37] GARRISON J L, KOMJATHY A, ZAVOROTNY V U, et al. Wind speed measurement using forward scattered GPS signals[J]. IEEE transactions on geoscience and remote sensing, 2002, 40(1): 50-65. DOI: 10.1109/36.981349
    [38] CARDELLACH E, RUFFINI G, PINO D, et al. Mediterranean balloon experiment: ocean wind speed sensing from the stratosphere, using GPS reflections[J]. Remote sensing of environment, 2003, 3(88): 351-362. DOI: 10.1016/S0034-4257(03)00176-7
    [39] FOTI G, GOMMENGINGER C, JALES P, et al. Spaceborne GNSS reflectometry for ocean winds: first results from the UK TechDemoSat-1 mission[J]. Geophysical research letters, 2015, 42(13): 5435-5441. DOI: 10.1002/2015GL064204
    [40] ZAVOROTNY V U, ZUFFADA C. Assessing the possibility of measuring the thickness of undeformed first-year Arctic sea ice from bistatic reflections of GPS signals[C]//The 2003 Workshop on Oceanography with GNSS-R, 2003.
    [41] KAINULAINEN J, RAUTIAINEN K, LEMMETYINEN J, et al. Detection of a sea surface salinity gradient using data sets of airborne synthetic aperture radiometer HUT-2-D and a GNSS-R instrument[J]. IEEE transactions on geoscience and remote sensing, 2011, 49(11): 4561-4571. DOI: 10.1109/TGRS.2011.2151864
    [42] CHEW C, REAGER J T, SMALL E. CYGNSS data map flood inundation during the 2017 Atlantic hurricane season[J]. Scientific reports, 2018, 8(1): 9336. DOI: 10.1038/s41598-018-27673-x
    [43] WICKERT J, CARDELLACH E, MARTIN-NEIRA M, et al. GEROS-ISS: GNSS reflectometry, radio occultation, and scatterometry onboard the international space station[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2016, 9(10): 4552-4581. DOI: 10.1109/JSTARS.2016.2614428
    [44] 杨东凯, 张益强, 张其善, 等. 基于GPS卫星信号的海面风场遥感方法研究与实现[J]. 遥感信息, 2006(3): 10-12,18. DOI: 10.3969/j.issn.1000-3177.2006.03.004
    [45] 符养, 周兆明. GNSS-R海洋遥感方法研究[J]. 武汉大学学报(信息科学版), 2006, 31(2): 128-131.
    [46] 王迎强, 严卫, 符养, 等. 利用机载 GNSS反射信号反演海面风速的研究[J]. 海洋学报, 2008, 30(6): 51-59.
    [47] 王鑫, 孙强, 张训械, 等. 中国首次岸基GNSS-R海洋遥感实验[J]. 科学通报, 2008, 53(5): 589-592. DOI: 10.3321/j.issn:0023-074X.2008.05.015
    [48] 万玮, 陈秀万, 彭学峰, 等. GNSS遥感研究与应用进展和展望[J]. 遥感学报, 2016, 20(5): 858-874.
    [49] 刘原华, 何孟然, 牛新亮. GNSS-R海面风速反演技术研究[J]. 全球定位系统, 2020, 45(2): 55-59.
    [50] 胡媛, 钟李程, 陈行杨, 等. GNSS-R信噪比信号在海面测高技术的研究综述[J]. 全球定位系统, 2021, 46(4): 1-7. DOI: 10.12265/j.gnss.2021011502
    [51] 杨明华, 曹云昌. 基于GNSS-R的后续海冰观测实验[J]. 全球定位系统, 2014, 39(4): 51-54,68.
    [52] 高洪兴, 杨东凯, 张波, 等. 基于 GNSS 卫星反射信号的海冰厚度探测[J]. 电子与信息学报, 2017, 39(5): 1096-1100.
    [53] 杨东凯, 王强, 曹云昌, 等. 基于北斗反射信号的海面有效波高探测[J]. 高科技与产业化, 2014(10): 81-83.
    [54] JIN S G, QIAN X D, WU X R. Sea level change from BeiDou Navigation Satellite System-reflectometry (BDS-R): first results and evaluation[J]. Global and planetary change, 2017(149): 20-25. DOI: 10.1016/j.gloplacha.2016.12.010
    [55] 胡媛, 陈行杨, 顾旺旺, 等. GNSS-R海面测高现状及其常用方法研究进展[J]. 全球定位系统, 2020, 45(3): 96-103.
    [56] 捕风一号双星发射, 利用导航信号监测台风[J]. 国际太空, 2019(6): 10-11.
    [57] SUN Y Q, LIU C L, TIAN Y S, et al. The status and progress of Fengyun-3E GNOS II mission for GNSS remote sensing[C]//IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2019) 2019: 5181-5184. DOI: 10.1109/IGARSS.2019.8899319
    [58] MASTERS D, ZAVOROTNY V U, KATZBERG S, et al. GPS signal scattering from land for moisture content determination[C]//IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2000), 2000, 7: 3090-3092. DOI: 10.1109/IGARSS.2000.860346
    [59] MASTERS D, AXELRAD P, KATZBERG S. Initial results of land-reflected GPS bistatic radar measurements in SMEX02[J]. Remote sensing of environment, 2004, 92(4): 507-520. DOI: 10.1016/j.rse.2004.05.016
    [60] 刘成. GNSS-R应用于测量表层土壤湿度及软件设计[D]. 北京: 中国地质大学, 2015.
    [61] PIERDICCA N, GUERRIERO L, CAPARRINI M, et al. GNSS reflectometry as a tool to retrieve soil moisture and vegetation biomass: experimental and theoretical activities[C]//IEEE International Conference on Localization and GNSS (ICL-GNSS), 2013: 1-5. DOI: 10.1109/ICL-GNSS.2013.6577282
    [62] CHEW C, SHAH R, ZUFFADA C, et al. Demonstrating soil moisture remote sensing with observations from the UK TechDemoSat-1 satellite mission[J]. Geophysical research letters, 2016, 43(7): 3317-3324. DOI: 10.1002/2016GL068189
    [63] RODRIGUEZ-ALVAREZ N, BOSCH-LLUIS X, CAMPS A, et al. Soil moisture retrieval using GNSS- R techniques: experimental results over a bare soil field[J]. IEEE transactions on geoscience and remote sensing, 2009, 47(11): 3616-3624. DOI: 10.1109/TGRS.2009.2030672
    [64] LARSON K M, BRAUN J J, SMALL E E, et al. GPS multipath and its relation to near-surface soil moisture content[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2010, 3(1): 91-99. DOI: 10.1109/JSTARS.2009.2033612
    [65] LARSON K M, GUTMANN E D, ZAVOROTNY V U, et al. Can we measure snow depth with GPS receivers?[J]. Geophysical research letters, 2009, 36(17): L17502. DOI: 10.1029/2009GL039430
    [66] GEREMIA-NIEVINSKI F G, LARSON K M. Inverse modeling of GPS multipath for snow depth estimation—part I: formulation and simulations[J]. IEEE transactions on geoscience and remote sensing, 2014, 52(10): 6555-6563. DOI: 10.1109/TGRS.2013.2297681
    [67] GEREMIA-NIEVINSKI F G, LARSON K M. Inverse modeling of GPS multipath for snow depth estimation-Part II: Application and validation[J]. IEEE transactions on geoscience and remote sensing, 2014, 52(10): 6564-6573. DOI: 10.1109/TGRS.2013.2297688
    [68] RODRIGUEZ-ALVAREZ N, AGUASCA A, VALENCIA E, et al. Snow thickness monitoring using GNSS measurements[J]. IEEE geoscience and remote sensing letters, 2012, 9(6): 1109-1113. DOI: 10.1109/LGRS.2012.2190379
    [69] 关止, 赵凯, 宋冬生. 利用反射GPS信号遥感土壤湿度[J]. 地球科学进展, 2006, 21(7): 747-750. DOI: 10.3321/j.issn:1001-8166.2006.07.013
    [70] 严颂华, 龚健雅, 张训械, 等. GNSS-R测量地表土壤湿度的地基实验[J]. 地球物理学报, 2011, 54(11): 2735-2744. DOI: 10.3969/j.issn.0001-5733.2011.11.003
    [71] 李黄, 夏青, 尹聪, 等. 我国GNSS-R遥感技术的研究现状与未来发展趋势[J]. 雷达学报, 2013, 2(4): 389-399.
    [72] 杨磊. GNSS-R农田土壤湿度反演方法研究[J]. 测绘学报, 2018, 47(1): 134 DOI: 10.11947/j.AGCS.2017.20170356
    [73] WAN W, BAI W H, ZHAO L M, et al. Initial results of China’s GNSS-R airborne campaign: soil moisture retrievals[J]. Science bulletin, 2015, 60(10): 964-971,984. DOI: 10.1007/s11434-015-0789-9
    [74] YAN S H, ZHANG N, CHEN N C, et al. Using reflected signal power from the BeiDou geostationary satellites to estimate soil moisture[J]. Remote sensing letters, 2019(10): 1-10. DOI: 10.1080/2150704X.2018.1519272
    [75] 邵礼明, 张云, 孟婉婷, 等. 基于GNSS-R干雪深度检测的研究[J]. 电子设计工程, 2015, 23(17): 9-12. DOI: 10.3969/j.issn.1674-6236.2015.17.004
    [76] 李彬彬, 张云, 杨树瑚, 等. 单天线GNSS反射信号的积雪厚度反演[J]. 全球定位系统, 2016, 41(6): 37-41,54.
    [77] JIN S G, QIAN X D, KUTOGLU H. Snow depth variations estimated from GPS-Reflectometry: a case study in Alaska from L2P SNR data[J]. Remote sensing, 2016, 8(1): 63. DOI: 10.3390/rs8010063
    [78] 刘智康, 安家春, 冯鱼, 等. 基于GNSS-R 技术的北极黄河站雪深反演研究[J]. 华东交通大学学报, 2016, 33(5): 81-86. DOI: 10.3969/j.issn.1005-0523.2016.05.013
    [79] 王力福, 张双成, 张成龙, 等. 地基GPS用于阿勒泰积雪深度反演研究[J]. 沙漠与绿洲气象, 2019, 13(1): 93-98.
    [80] HARDY K R, HAJJ G A, KURSINSKI E R. Accuracies of atmospheric profiles obtained from GPS occultations[J]. International journal of satellite communications, 1994, 12: 463-473. DOI: 10.1002/sat.4600120508
    [81] KURSINSKI E R. Monitoring the Earth's atmosphere with GPS[J]. GPS World, 1995, 5(3): 50-54.
    [82] 王也英, 杜晓勇, 袁勇. 我国天基GPS掩星探测现状及发展趋势[J]. 气象科技, 2011, 39(2): 202-206. DOI: 10.3969/j.issn.1671-6345.2011.02.012
    [83] 原民辉, 刘韬. 空间对地观测系统与应用最新发展[J]. 国际太空, 2018(4): 8-15. DOI: 10.3969/j.issn.1009-2366.2018.04.003
    [84] 胡雄, 张训械, 吴小成, 等. 山基GPS掩星观测实验及其反演原理[J]. 地球物理学报, 2006, 49(1): 22-27. DOI: 10.3321/j.issn:0001-5733.2006.01.004
    [85] 范磊, 符养, 杜晓勇, 等. 雾灵山山基掩星观测反演误差分析[J]. 武汉大学学报(信息科学版), 2008, 33(1): 89-92.
    [86] 王树志, 朱光武, 白伟华, 等. 风云三号C星全球导航卫星掩星探测仪首次实现北斗掩星探测[J]. 物理学报, 2015, 64(8): 408-415.
    [87] YANG Z D, ZHANG P, GU S Y, et al. Capability of Fengyun-3D satellite in earth system observation[J]. Journal of meteorological research, 2019, 33(6): 1113-1130. DOI: 10.1007/s13351-019-9063-4
    [88] CHENG Y, LIN J, SHEN X H, et al. Analysis of GNSS radio occultation data from satellite ZH-01[J]. Earth and planetary physics, 2018, 2(6): 499-504. DOI: 10.26464/epp2018048
    [89] 张纪满, 林剑, 祝芙英. GPS-LEO无线电中性大气掩星反演误差分析[J]. 大地测量与地球动力学, 2018, 38(11): 1159-1164.
    [90] GOBIET A, KIRCHENGAST G. Advancements of GNSS radio occultation retrieval in the upper stratosphere for optimal climate monitoring utility[J]. Journal of geophysical research:atmospheres, 2004(109): 137-148. DOI: 10.1007/978-3-662-09041-1_14
    [91] 邹逸航, 马旭林, 姜胜, 等. COSMIC掩星资料同化对台风“天兔”预报影响的试验[J]. 海洋学研究, 2017, 35(3): 9-19. DOI: 10.3969/j.issn.1001-909X.2017.03.002
    [92] 吴小成, 胡雄, 宫晓艳, 等. 三维模式约束的电离层掩星反演方法[J]. 地球物理学报, 2008, 51(3): 618-625. DOI: 10.3321/j.issn:0001-5733.2008.03.002
    [93] LEI J H, SYNDERGAARD S, BURNS A G, et al. Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: preliminary results[J]. Journal of geophysical research, 2007, 112(A7): A07308. DOI: 10.1029/2006JA012240
    [94] 欧明, 甄卫民, 徐继生, 等. 地基GPS与掩星联合的电离层层析成像方法研究[J]. 全球定位系统, 2014, 39(5): 1-7.
    [95] 陈锐志, 王磊, 李德仁, 等. 导航与遥感技术融合综述[J]. 测绘学报, 2019, 48(12): 1507-1522.
    [96] CARDELLACH E, TOMÁS S, OLIVERAS S, et al. Sensitivity of PAZ LEO polarimetric GNSS radio-occultation experiment to precipitation events[J]. IEEE transactions on geoscience and remote sensing, 2014, 53(1): 190-206. DOI: 10.1109/TGRS.2014.2320309
    [97] PADULLÉS R, CARDELLACH E, JUÁREZ M D L T, et al. Atmospheric polarimetric effects on GNSS radio occultations: the ROHP-PAZ field campaign[J]. Atmospheric chemistry and physics, 2016, 16(2): 635-649. DOI: 10.5194/acpd-15-18747-2015
    [98] CARDELLACH E, RULLÓP R, TOMÁS S, et al. Probability of intense precipitation from polarimetric GNSS radio occultation observations[J]. Quarterly journal of the royal meteorological society, 2017, 144(S1): 206-220. DOI: 10.1002/qj.3161
    [99] CARDELLACH E, OLIVERAS S, RIUS A, et al. Sensing heavy precipitation with GNSS polarimetric radio occultations[J]. Geophysical research letters, 2019, 46(2): 1024-1031. DOI: 10.1029/2018GL080412
    [100] 安豪. 全球导航卫星信号极化相移监测降雨强度技术研究[D]. 长沙: 国防科技大学, 2017.
    [101] 安豪, 严卫, 赵现斌, 等. 基于1-10 GHz空地链路信号的雨强监测方法可行性研究[J]. 物理学报, 2013, 62(19): 555-563.
    [102] YAN W, AN H, FU Y, et al. A method for estimating rain rate from polarimetric GNSS measurements: preliminary analysis[J]. Atmospheric research, 2014(149): 70-76. DOI: 10.1016/j.atmosres.2014.05.016
    [103] AN H, YAN W, HUANG Y X, et al. GNSS measurement of rain rate by polarimetric phase shift: theoretical analysis[J]. Atmosphere, 2016, 7(8): 101. DOI: 10.3390/atmos7080101
    [104] AN H, YAN W, BIAN S S, et al. Rain monitoring with polarimetric GNSS signals: ground-based experimental research[J]. Remote sensing, 2019, 11(19): 2293. DOI: 10.3390/rs11192293
  • 加载中
图(6)
计量
  • 文章访问数:  480
  • HTML全文浏览量:  338
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-13
  • 录用日期:  2021-10-13
  • 网络出版日期:  2021-12-31

目录

    /

    返回文章
    返回