Application of moving horizon estimation method for altitude constrained pseudo-range single-point positioning
-
摘要: 针对目前全球卫星导航系统(GNSS)中伪距单点定位(SPP)技术的定位精度已不能满足现代大多数应用场景的需求,提出了一种附加高度约束的滚动时域估计(MHE)算法,以此来改善SPP的定位性能. 附加高度约束的MHE算法是将接收机的位置高度作为非线性约束加入到SPP的估计参数中,并采用近似MHE算法来进一步提高定位精度的优化算法. 结果表明:高度约束的MHE滤波比传统最小二乘(LS)的滤波具有更好的平滑特性,同时随其视窗大小的增加,其定位精度得到了进一步改善. 验证了附加高度约束MHE方案的有效性、可行性,所得结果对SPP的实际应用具有重要的参考意义.
-
关键词:
- 全球卫星导航系统(GNSS) /
- 伪距单点定位(SPP) /
- 最小二乘(LS) /
- 高度约束 /
- 滚动时域估计(MHE)
Abstract: In order to improve the positioning performance of pseudo-range single-point positioning (SPP) technology in Global Navigation Satellite System (GNSS), a moving horizon estimation (MHE) algorithm with height constraint was proposed. On the basis of adding height as nonlinear constraint to SPP parameter estimation, constrained MHE algorithm is used to improve the accuracy of SPP. Experiments show that compared with the least squares (LS) method, the MHE filter based on high constraint has better smoothing performance, and the effectiveness and feasibility of MHE scheme with additional height constraints are verified. The results obtained are of great significance to the practical application of SPP. -
表 1 不同方案的处理时长
s 实验方案 LS MHE-窗口长度 MHE-2 MHE-4 MHE-6 处理时长 0.060 3 0.170 9 0.454 2 0.926 7 表 2 SPP定位误差RMS值
实验方案 LS/m MHE-2/m MHE-4/m X 1.11 0.21 0.20 Y 3.23 0.91 0.87 Z 1.01 0.23 0.26 3D 3.56 0.96 0.93 3D定位改善/% - 73.03 81.46 表 3 SPP定位误差RMS值
实验方案 LS/m MHE-2/m MHE-4/m X 3.81 2.53 1.95 Y 7.31 4.70 3.23 Z 4.14 3.11 2.26 3D 9.22 6.18 4.39 3D定位改善/% - 33.00 52.40 -
[1] 范福平. GNSS 实时观测数据解码及伪距单点定位性能分析[J]. 测绘与空间地理信息, 2021, 44(6): 141-144. DOI: 10.3969/j.issn.1672-5867.2021.06.039 [2] STEIGENBERGER P, MONTENBRUCK O. Consistency of MGEX orbit and clock products[J]. Engineering, 2020, 6(8): 898-903. DOI: 10.1016/j.eng.2019.12.005 [3] ZAMINPARDAZ S, TEUNISSEN P J G, NADARAJAH N. IRNSS/NavIC single-point positioning: a service area precision analysis[J]. Marine geodesy, 2017, 40(4): 259-274. DOI: 10.1080/01490419.2016.1269034 [4] LIU R X, GUO B F, ZHANG A M, et al. Research on GPS precise point positioning algorithm with a sea surface height constraint[J]. Ocean engineering, 2020(197): 106826. DOI: 10.1016/j.oceaneng.2019.106826 [5] ATIA M M, WASLANDER S L. Map-aided adaptive GNSS/IMU sensor fusion scheme for robust urban navigation[J]. Measurement, 2018(131): 615-627. DOI: 10.1016/j.measurement.2018.08.050 [6] KERMARREC G, NEUMANN I, ALKHATIB H, et al. The stochastic model for Global Navigation Satellite Systems and terrestrial laser scanning observations: a proposal to account for correlations in least squares adjustment[J]. Journal of applied geodesy, 2019, 13(2): 93-104. DOI: 10.1515/jag-2018-0019 [7] SIMON D. Optimal state estimation: Kalman, H∞, and nonlinear approaches [M]. Cleveland: Cleveland State University, 2006. [8] HU G G, GAO B B, ZHONG Y M, et al. Unscented Kalman filter with process noise covariance estimation for vehicular INS/GPS integration system[J]. Information fusion, 2020, 64(1): 194-204. DOI: 10.1016/j.inffus.2020.08.005 [9] SIMON D. Kalman filtering with state constraints: a survey of linear and nonlinear algorithms[J]. IET control theory and applications, 2010, 4(8): 1303-1318. DOI: 10.1049/iet-cta.2009.0032 [10] 孔俊东. 一类滚动时域估计方法的性能指标研究[D]. 杭州: 杭州电子科技大学, 2020. [11] SÁNCHEZ G, MURILLO M, GIOVANINI L. Adaptive arrival cost update for improving moving horizon estimation performance[J]. ISA trans, 2017(68): 54-62. DOI: 10.1016/j.isatra.2017.02.012 [12] WANG S, CHEN L, GU D B, et al. An optimization based moving horizon estimation with application to localization of autonomous underwater vehicles[J]. Robotics and autonomous systems, 2014, 62(10): 1581-1596. DOI: 10.1016/j.robot.2014.05.004 [13] ZHANG X H, ZUO X, LI P. Mathematic model and performance comparison between ionosphere free combined and uncombined precise point positioning[J]. Geomatics and information science of Wuhan University, 2013, 38(5): 561-565. DOI: 10.1016/j.robot.2014.05.004 [14] BAHADUR B, NOHUTCU M. PPPH: a MATLAB-based software for multi-GNSS precise point positioning analysis[J]. GPS solutions, 2018, 22(4): 113. DOI: 10.1007/s10291-018-0777-z [15] LUNDBERG J B. Alternative algorithms for the GPS static positioning solution[J]. Applied mathematics and computation, 2001, 119(1): 21-34. DOI: 10.1016/S0096-3003(99)00219-2 [16] PARK C, TEUNISSEN P J G. Integer least squares with quadratic equality constraints and its application to GNSS attitude determination systems[J]. International journal of control, automation and systems, 2009, 7(4): 566-576. DOI: 10.1007/s12555-009-0408-0 [17] PHATAK M, CHANSARKAR M, KOHLI S. Position fix from three GPS satellites and altitude: a direct method[J]. IEEE transactions on aerospace and electronic systems, 2002, 35(1): 350-354. DOI: 10.1109/7.745705