The influence of different calculation strategies on the establishment of GPS coordinate sequence noise model and speed
-
摘要: 解算策略选择与GPS站速度及参数模型估计密切相关,本文选取陆态网下121个GPS基准站2011—2019年时间序列作为研究对象,采用赤池信息量准则/贝叶斯信息量准则(AIC/BIC)最优噪声模型评价准则,探讨GAMIT、Bernese及二者联合解算策略(Comb)对GPS坐标序列噪声模型和速度估计的影响. 结果表明:不同的解算策略会对GPS站参数估计结果产生一定的影响,在最优噪声模型估计上,GAMIT和Comb解算结果主要表现为闪烁噪声+白噪声(FN+WN)和幂律噪声 (PL)+WN模型特性,Bernese解算结果在东(E)、北(N)方向表现为FN+WN模型特性,天顶(U)方向则为PL+WN模型特性;解算策略对于速度及速度不确定度的影响,在U方向上会更为显著.Abstract: The choice of solution strategy is closely related to GPS station speed and parameter model estimation. In this paper, 121 GPS reference stations under the land network are selected as the research object, and the akaike information criterion/Bayesian information criterion (AIC/BIC) optimal noise model evaluation criteria are used to discuss GAMIT, Bernese and their combined solution strategy (Comb) on the noise model and velocity estimation of the GPS coordinate sequence. The results show that different calculation strategies will have a certain impact on the GPS station parameter estimation results. In terms of the optimal noise model estimation, the GAMIT and Comb solution results mainly show the characteristics of the flicke noise+white noise (FN+WN) and power-law noise (PL)+WN models. The Bernese solution results show the characteristics of the FN+WN model in the east (E) and north (N) directions, and the characteristics of the PL+WN model in the up (U) direction; the influence of the solution strategy on the speed and speed uncertainty will be more significant in the U direction.
-
Key words:
- GPS /
- coordinate sequence /
- solution strategy /
- noise model /
- speed estimation
-
表 1 数据缺失率统计表
% 解算策略 最大值 最小值 平均值 GAMIT 8.9 0.3 3.7 Bernese 9.0 0.3 2.7 Comb 8.5 1.0 3.1 表 2 噪声模型测站数估计结果
解算策略 噪声模型 E N U 合计 GAMIT FN+RWN+WN 8 9 7 24 FN+WN 38 44 75 157 GGM+WN 26 24 10 60 PL+WN 49 44 29 122 Bernese FN+RWN+WN 24 10 8 42 FN+WN 60 85 24 169 GGM+WN 16 2 23 41 PL+WN 21 24 66 111 Comb FN+RWN+WN 13 21 4 38 FN+WN 47 50 64 161 GGM+WN 15 3 9 27 PL+WN 46 47 44 137 表 3 不同解算策略下噪声模型测站改变量
解算策略 E N U 合计 GAMIT-Bernese 73 72 76 221 GAMIT-Comb 46 50 53 149 Bernese-Comb 69 74 64 207 表 4 不同解算策略下差值极值
mm·a−1 解算策略 方向分量 最小值 最大值 均值 GAMIT-Comb E 0.029 0.169 0.081 N 0 0.192 0.050 U 0.003 0.539 0.137 Bernese-Comb E 0.011 0.397 0.112 N 0.089 0.410 0.282 U 0.207 1.469 0.819 -
[1] 朱李忠, 赵忠海, 张洪文. 基于BERNESE和GAMIT/GLOBK的联合数据处理探讨[J]. 测绘与空间地理信息, 2016, 39(1): 76-78. DOI: 10.3969/j.issn.1672-5867.2016.01.025 [2] 牛之俊, 游新兆, 王琪, 等. 中国地壳运动速度场—GAMIT和GISPY解算结果比对[J]. 大地测量与地球动力学, 2003, 23(3): 4-8. [3] CETIN S, AYDIN C, DOGAN U. Comparing GPS positioning errors derived from GAMIT/GLOBK and Bernese GNSS software packages: a case study in CORS-TR in Turkey[J]. Empire survey review, 2019, 51(369): 533-543. DOI: 10.1080/00396265.2018.1505349 [4] 贺小星, 孙喜文, 马飞虎, 等. 随机模型对IGS站速度及其不确定度影响分析[J]. 测绘科学, 2019, 44(1): 36-41. [5] 宋爱虎, 马超, 周宁. 有色噪声对东南极区域GPS测站三维速度估计的影响[J]. 测绘通报, 2017(10): 18-21. [6] HE X X, MONTILLET J P, FERNANDES R, et al. Review of current GPS methodologies for producing accurate time series and their error sources[J]. Journal of geodynamics, 2017(106): 12-29. DOI: 10.1016/j.jog.2017.01.004 [7] 贺小星, 花向红, 鲁铁定, 等. 时间跨度对GPS坐标序列噪声模型及速度估计影响分析[J]. 国防科技大学学报, 2017, 39(6): 12-18. DOI: 10.11887/j.cn.201706003 [8] He X X, HUA X H, YU K G, et al. Accuracy enhancement of GPS time series using principal component analysis and block spatial filtering[J]. Advances in space research, 2015, 55(5): 1316-1327. DOI: 10.1016/j.asr.2014.12.016 [9] 姜卫平, 周晓慧. 澳大利亚GPS坐标时间序列跨度对噪声模型建立的影响分析[J]. 中国科学(地球科学), 2014, 44(11): 2461-2478. [10] SANTAMARÍA-GÓMEZ A, BOUIN M N, COLLILIEUX X, et al. Correlated errors in GPS position time series: implications for velocity estimates[J]. Journal of geophysical research: solid earth, 2011, 116(B1): B01405. DOI: 10.1029/2010JB007701 [11] LANGBEIN J. Noise in GPS displacement measurements from Southern California and Southern Nevada[J]. Journal of geophysical research: solid earth, 2008, 113(B5): B05405. DOI: 10.1029/2007JB005247 [12] BOS M S, FERNANDES R M S, WILLIAMS S D P, et al. Fast error analysis of continuous GPS observations[J]. Journal of geodesy, 2008, 82(3): 157-166. DOI: 10.1007/s00190-007-0165-x [13] BOS M S, FERNANDES R M S, WILLIAMS S D P, et al. Fast error analysis of continuous GNSS observations with missing data[J]. Journal of geodesy, 2013, 87(4): 351-360. DOI: 10.1007/s00190-012-0605-0 [14] 管雅慧, 王坦, 胡顺强, 等. 云南地区GPS基准站噪声模型分析[J]. 全球定位系统, 2020, 45(2): 68-73,79. [15] MAO A, HARRISON C, DIXON T H. Noise in GPS coordinate time series[J]. Journal of geophysical research, 1999, 104(B2): 2797-2816. DOI: 10.1029/1998JB900033 [16] PREMUZIC M, ĐAPO A, BACIC Z, et al. Accuracy analysis of point velocities determined by different software packages and GNSS measurement processing methods[J]. Technical journal, 2020, 14(4): 446-457. DOI: 10.31803/tg-20200515225239